Poly(phenylene sulfide)-graphite composites for bipolar plates with preferred morphological orientation

Abstract

Bipolar plates in phosphoric acid fuel cells require inertness to phosphoric acid as well as excellent electrical, thermal, and mechanical properties. For this application, we prepared poly(phenylene sulfide) (PPS)-graphite composites with random or ordered graphite orientations by compression and extrusion-compression processes, respectively. Due to current limitations of extruding graphite-filled polymers, only moderately high graphite concentrations were used (up to 40 wt%). The compressed composites contained graphite sheets in a planar orientation (parallel to the pressing direction) and exhibited highly anisotropic electrical and thermal conductivity, with much higher in-plane than through-plane components. In contrast, composites that were extruded prior to compression exhibited randomly oriented graphite due to shearing forces during extrusion and therefore displayed isotropic properties. Thus, their through-plane electrical and thermal conductivity was superior to those of the ordered composite, while the in-plane properties were inferior. Notably, the internal graphitic structure affected the electrical conductivity more than the thermal conductivity. The randomly oriented composite also exhibited superior flexural strength, although the thermal stability of the two composites was almost equal. This study offers insights into the structure-property relationship of PPS-graphite composites as well as the effect of the orientation of conductive two-dimensional fillers on anisotropic properties.

This is a preview of subscription content, access via your institution.

Abbreviations

ID/IG :

ratio of intensities of the D and G bands

I002/I100 :

ratio of intensities of the 100 and 002 reflections of graphite

Rs :

sheet resistance

ϕ :

graphite concentration [wt%]

λ :

wavelength of radiation

θ :

Bragg angle

β :

full width at half maximum (FWHM)

Δg:

weight gain of the composite sample [wt%]

References

  1. 1.

    S. H. Lee, N. Kakati, J. Maiti, S. H. Jee, D. J. Kalita and Y. S. Yoon, Thin Solid Films, 529, 374 (2013).

    CAS  Article  Google Scholar 

  2. 2.

    H. Sun, K. Cooke, G. Eitzinger, P. Hamilton and B. Pollet, Thin Solid Films, 528, 199 (2013).

    CAS  Article  Google Scholar 

  3. 3.

    B. D. Cunningham and D. G. Baird, J. Power Sources, 168, 418 (2007).

    CAS  Article  Google Scholar 

  4. 4.

    S. Dhakate, R. Mathur, B. Kakati and T. Dhami, Int. J. Hydrogen Energy, 32, 4537 (2007).

    CAS  Article  Google Scholar 

  5. 5.

    R. K. Pachauri and Y. K. Chauhan, Int. J. Elec. Power, 74, 49 (2016).

    Article  Google Scholar 

  6. 6.

    C. Gao, S. Zhang, Y. Lin, F. Li, S. Guan and Z. Jiang, Compos. Part B-Eng., 79, 124 (2015).

    CAS  Article  Google Scholar 

  7. 7.

    H. Ma, B. Chu and B. S. Hsiao, Eur. Polym. J., 87, 398 (2017).

    CAS  Article  Google Scholar 

  8. 8.

    H. Jung, S. Yu, N. S. Bae, S. M. Cho, R. H. Kim, S. H. Cho, I. Hwang, B. Jeong, J. S. Ryu, J. Hwang, S. M. Hong, C. M. Koo and C. Park, ACS Appl. Mater. Interfaces, 7, 15256 (2015).

    CAS  Article  Google Scholar 

  9. 9.

    M. H. Lee, H. Y. Kim, S. M. Oh, B. C. Kim, D. Bang, J. T. Han and J. S. Woo, Int. J. Hydrogen Energy, 43, 21918 (2018).

    CAS  Article  Google Scholar 

  10. 10.

    N. H. Kim, T. Kuila, K. M. Kim, S. H. Nahm and J. H. Lee, Polym. Test, 31, 537 (2012).

    CAS  Article  Google Scholar 

  11. 11.

    M. Park, J. H. Park, B. J. Yang, J. Cho, S. Y. Kim and I. Jung, Compos. Part A Appl. Sci. Manuf., 109, 124 (2018).

    CAS  Article  Google Scholar 

  12. 12.

    M. Khandelwal and M. M. Mench, J. Power Sources, 161, 1106 (2006).

    CAS  Article  Google Scholar 

  13. 13.

    H. Suherman, A. B. Sulong and J. Sahari, Ceram. Int., 39, 1277 (2013).

    CAS  Article  Google Scholar 

  14. 14.

    H. Choi, J. S. Woo, J. T. Han and S.-Y. Park, Nanotechnology, 28, 465706 (2017).

    Article  Google Scholar 

  15. 15.

    P. M. Ajayan, O. Stephan, C. Colliex and D. Trauth, Science, 265, 1212 (1994).

    CAS  Article  Google Scholar 

  16. 16.

    U. Gubler, M. Raunhardt and A. Stump, Thin Solid Films, 515, 1737 (2006).

    CAS  Article  Google Scholar 

  17. 17.

    W Bauhofer and J. Z. Kovacs, Compos. Sci. Technol., 69, 1486 (2009).

    CAS  Article  Google Scholar 

  18. 18.

    N. Gamze Karsli, S. Yesil and A. Aytac, Compos. Part B-Eng., 63, 154 (2014).

    CAS  Article  Google Scholar 

  19. 19.

    M. Russello, E. K. Diamanti, G. Catalanotti, F. Ohlsson, S. C. Hawkins and B. G. Falzon, Compos. Struct., 206, 272 (2018).

    Article  Google Scholar 

  20. 20.

    M. Y. Zakaria, A. B. Sulong, J. Sahari and H. Suherman, Compos. Part B-Eng., 83, 75 (2015).

    CAS  Article  Google Scholar 

  21. 21.

    R. Zhang, A. Dowden, H. Deng, M. Baxendale and T. Peijs, Compos. Sci. Technol., 69, 1499 (2009).

    CAS  Article  Google Scholar 

  22. 22.

    R. Ghasemi and L. Elmquist, Wear, 320, 120 (2014).

    CAS  Article  Google Scholar 

  23. 23.

    P. Pütschke, T. D. Fornes and D. R. Paul, Polymer, 43, 3247 (2002).

    Article  Google Scholar 

  24. 24.

    E. T. Thostenson and T. W. Chou, J. Phys. D: Appl. Phys., 35, L77 (2002).

    CAS  Article  Google Scholar 

  25. 25.

    T. Derieth, G. Bandlamudi, P. Beckhaus, C. Kreuz, F. Mahlendorf and A. Heinzel, J. New Mater. Electrochem. Syst., 11, 21 (2008).

    CAS  Google Scholar 

  26. 26.

    R. B. Mathur, S. R. Dhakate, D. K. Gupta, T. L. Dhami and R. K. Aggarwal, J. Mater. Process. Technol., 203, 184 (2008).

    CAS  Article  Google Scholar 

  27. 27.

    J. Guo, Y. Liu, R. Prada-Silvy, Y. Tan, S. Azad, B. Krause, P. Pütschke and B. P. Grady, J. Polym. Sci. B Polym. Phys., 52, 73 (2014).

    CAS  Article  Google Scholar 

  28. 28.

    J. Xing, Q.-Q. Ni, B. Deng and Q. Liu, Compos. Sci. Technol., 134, 184 (2016).

    CAS  Article  Google Scholar 

  29. 29.

    A. Ameli, P. U. Jung and C. B. Park, Compos. Sci. Technol., 76, 37 (2013).

    CAS  Article  Google Scholar 

  30. 30.

    Y. Jia, H. He, Y. Geng, B. Huang and X. Peng, Compos. Sci. Technol., 145, 55 (2017).

    CAS  Article  Google Scholar 

  31. 31.

    M. Karimi, R. Ghajar and A. Montazeri, Compos. Struct., 201, 528 (2018).

    Article  Google Scholar 

  32. 32.

    P. Ding, J. Zhang, N. Song, S. Tang, Y. Liu and L. Shi, Compos. Sci. Technol., 109, 25 (2015).

    CAS  Article  Google Scholar 

  33. 33.

    R. A. Antunes, M. C. L. De Oliveira, G. Ett and V. Ett, J. Power Sources, 196, 2945 (2011).

    CAS  Article  Google Scholar 

  34. 34.

    F. G. B. San and G. Tekin, Int. J. Energy Res., 37, 283 (2013).

    CAS  Article  Google Scholar 

  35. 35.

    M. Xiao, Y. Lu, S. J. Wang, Y. F. Zhao and Y. Z. Meng, J. Power Sources, 160, 165 (2006).

    CAS  Article  Google Scholar 

  36. 36.

    H. S. Lee, H. J. Kim, S. G. Kim and S. H. Ahn, J. Mater. Process. Technol., 187, 425 (2007).

    Article  Google Scholar 

  37. 37.

    R. Dweiri and J. Sahari, J. Power Sources, 171, 424 (2007).

    CAS  Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Research Foundation of Korea (grant number NRF-2016M1A2A2937163) and the Korea Institute of Energy Technology Evaluation and Planning of Korea (grant number KETEP-20163010032040).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Soo-Young Park.

Ethics declarations

The authors declare that they have no conflict of interest.

Supporting Information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Park, HJ., Woo, J.S. & Park, SY. Poly(phenylene sulfide)-graphite composites for bipolar plates with preferred morphological orientation. Korean J. Chem. Eng. 36, 2133–2142 (2019). https://doi.org/10.1007/s11814-019-0397-5

Download citation

Keywords

  • Poly(phenylene sulfide)
  • Graphite
  • Extrusion
  • Compression
  • Anisotropy