Skip to main content
Log in

Microwave assisted persulfate induced degradation of sodium dodecyl benzene sulfonate

  • Environmental Engineering
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

Microwave assisted persulfate induced degradation of sodium dodecyl benzene sulfonate (SDBS) was investigated, focusing on establishing the best conditions for maximum degradation. The study involving different persulfate based oxidants, such as potassium persulfate (KPS), ammonium persulfate (NH3PS) and sodium persulfate (NaPS), revealed that the extent of degradation as 98.3, 82.2 and 68.2% was obtained for the use of KPS, NH3PS and NaPS, respectively. The study of the effect of SDBS concentration (25–100 mg/L), oxidant loading (0–3 g/L) and power (140–350 W) established that degradation decreased with an increase in the operating parameter beyond the optimum condition. Under optimized conditions using potassium persulfate (KPS) as an oxidant, 51.6% and 98.3% degradation of 50 mg/L SDBS solution was obtained by conventional and microwave assisted chemical oxidation approach, respectively, under optimized conditions of power, oxidant loading, volume and time maintained as 280 W, 2 g/L, 250 mL and 28 min, respectively. Extending the conventional approach for 120 min resulted in degradation of 92.5%, which establishes that microwave helps in reducing the treatment time significantly. Kinetic study revealed pseudo-first-order behavior for degradation of SDBS. Energy per order (EEO) for conventional and microwave assisted degradation was observed to be 840 and 317.33 kWh/m3, respectively. Overall, microwave assisted persulfate induced degradation of SDBS has been established to be promising method giving rapid degradation and better economics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. Edser, Focus Surfactants, 2018, 1 (2018).

    Google Scholar 

  2. J. Beltrán-Heredia, J. Sánchez-Martín and C. Solera-Hernández, Chem. Eng. J., 153, 56 (2009).

    Article  CAS  Google Scholar 

  3. E. Yüksel, I. A. Şengil and M. Özacar, Chem. Eng. J., 152, 347 (2009).

    Article  CAS  Google Scholar 

  4. S. R. Taffarel and J. Rubio, Miner. Eng., 23, 771 (2010).

    Article  CAS  Google Scholar 

  5. M. Sanchez, M. J. Rivero and I. Ortiz, Appl. Catal. B Environ., 101, 515 (2011).

    Article  CAS  Google Scholar 

  6. S. H. Wu and P. Pendleton, J. Colloid Interface Sci., 243, 306 (2001).

    Article  CAS  Google Scholar 

  7. G.-G. Ying, Environ. Int., 32, 417 (2006).

    Article  CAS  PubMed  Google Scholar 

  8. P. S. Bhandari and P. R. Gogate, J. Mol. Liq., 252, 495 (2018).

    Article  CAS  Google Scholar 

  9. S. Gupta, A. Pal, P. K. Ghosh and M. Bandyopadhyay, J. Environ. Sci. Health A Tox. Hazard. Subst. Environ. Eng., 38, 381 (2003).

    Article  PubMed  CAS  Google Scholar 

  10. E. Manousaki, E. Psillakis, N. Kalogerakis and D. Mantzavinos, Water Res., 38, 3751 (2004).

    Article  CAS  PubMed  Google Scholar 

  11. A. K. Mungray and P. Kumar, J. Hazard. Mater., 160, 362 (2008).

    Article  CAS  PubMed  Google Scholar 

  12. M. J. Scott and M. N. Jones, Biochim. Biophys. Acta, 1508, 235 (2000).

    Article  CAS  PubMed  Google Scholar 

  13. W. de Wolf and T. Feijtel, Chemosphere, 36, 1319 (1998).

    Article  CAS  PubMed  Google Scholar 

  14. D. A. Patterson, I. S. Metcalfe, F. Xiong and A. G. Livingston, Ind. Eng. Chem. Res., 40, 5507 (2001).

    Article  CAS  Google Scholar 

  15. U. Merrettig-Bruns and E. Jelen, Materials (Basel), 2, 181 (2009).

    Article  CAS  Google Scholar 

  16. A. Adak, M. Bandopadhyay and A. Pal, Colloids Surf. A: Physicochem. Eng. Asp., 254, 165 (2005).

    Article  CAS  Google Scholar 

  17. A. Adak, M. Bandopadhyay and A. Pal, J. Env. Sci. Health Part A, 40, 167 (2005).

    Article  Google Scholar 

  18. P. D. Purakayastha, A. Pal and M. Bandyopadhyay, Indian J. Chem. Technol., 12, 281 (2005).

    Google Scholar 

  19. W. Kong, B. Wang, H. Ma and L. Gu, J. Hazard. Mater., 137, 1532 (2006).

    Article  CAS  PubMed  Google Scholar 

  20. A. S. Koparal, E. Önder and Ü.B. Ögütveren, Desalination, 197, 262 (2006).

    Article  CAS  Google Scholar 

  21. M. A. Abu-Hassan, J.K. Kim, I. S. Metcalfe and D. Mantzavinos, Chemosphere, 62, 749 (2006).

    Article  CAS  PubMed  Google Scholar 

  22. R. A. Kimerle and R. D. Swisher, Water Res., 11, 31 (1977).

    Article  CAS  Google Scholar 

  23. F. Hosseini, F. Malekzadeh, N. Amirmozafari and N. Ghaemi, Int. J. Environ. Sci. Technol., 4, 127 (2007).

    Article  CAS  Google Scholar 

  24. H. Farzaneh, M. Fereidon, A. Noor and G. Naser, J. Biotechnol., 9, 55 (2010).

    Article  CAS  Google Scholar 

  25. N. Azbar, T. Yonar and K. Kestioglu, Chemosphere, 55, 35 (2004).

    Article  CAS  PubMed  Google Scholar 

  26. A. Alinsafi, M. Khemis, M. N. Pons, J. P. Leclerc, A. Yaacoubi, A. Benhammou and A. Nejmeddine, Chem. Eng. Process. Process. Intensif, 44, 461 (2005).

    Article  CAS  Google Scholar 

  27. F. Ríos, M. Olak-Kucharczyk, M. Gmurek and S. Ledakowicz, Arch. Environ. Prot., 43, 20 (2017).

    Article  Google Scholar 

  28. Z. Zhang, D. Xu, M. Shen, D. Wu, Z. Chen, X. Ji, F. Li and Y. Xu, Desalination, 249, 1022 (2009).

    Article  CAS  Google Scholar 

  29. I. M. Banat, P. Nigam, D. Singh and R. Marchant, Bioresour. Technol., 58, 217 (1996).

    Article  CAS  Google Scholar 

  30. N. N. Patil and S. R. Shukla, J. Water Process. Eng., 7, 314 (2015).

    Article  Google Scholar 

  31. P. R. Gogate and A. B. Pandit, Adv. Environ. Res., 8, 501 (2004).

    Article  CAS  Google Scholar 

  32. K. Ikehata and M. G. El-Din, Ozone Sci. Eng., 26, 327 (2004).

    Article  CAS  Google Scholar 

  33. W. H. Glaze, J. W. Kang and D. H. Chapin, Ozone Sci. Eng. J. Int. Ozone Assoc., 9, 335 (1987).

    Article  CAS  Google Scholar 

  34. U. M. Nascimento and E. B. Azevedo, J. Environ. Sci. Heal Part A Toxic/Hazardous Subst. Environ. Eng., 48, 1056 (2013).

    Article  CAS  Google Scholar 

  35. M. Ashokkumar, T. Niblett, L. Tantiongco and F. Grieser, Aust. J. Chem., 56, 1045 (2003).

    Article  CAS  Google Scholar 

  36. M. H. Dehghani, A. Zarei and M. Yousefi, MethodsX, 6, 805 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  37. M.N. Chong, B. Jin, C.W.K. Chow and C. Saint, Water Res., 44, 2997 (2010).

    Article  CAS  PubMed  Google Scholar 

  38. L. Perreux and A. Loupy, Tetrahedron, 57, 9199 (2001).

    Article  CAS  Google Scholar 

  39. M. B. Gawande, S. N. Shelke, R. Zboril and R. S. Varma, Acc Chem. Res., 47, 1338 (2014).

    Article  CAS  PubMed  Google Scholar 

  40. C. Qi, X. Liu, C. Lin, X. Zhang, J. Ma, H. Tan and W. Ye, Chem. Eng. J., 249, 6 (2014).

    Article  CAS  Google Scholar 

  41. Y. Kim and J. Ahn, Int. Biodeterior. Biodegrad., 95, 208 (2014).

    Article  CAS  Google Scholar 

  42. J. Jacob, L. H. L. Chia and F. Y. C. Boey, J. Mater. Sci., 30, 5321 (1995).

    Article  CAS  Google Scholar 

  43. Z. Zhang, Y. Deng, M. Shen, W. Han, Z. Chen, D. Xu and X. Ji, Water Sci. Technol., 63, 424 (2011).

    Article  CAS  PubMed  Google Scholar 

  44. A. Tsitonaki, B. Petri, M. Crimi, H. Mosbæk, R. L. Siegrist and P. L. Bjerg, Crit. Rev. Environ. Sci. Technol., 40, 55 (2010).

    Article  CAS  Google Scholar 

  45. S. Rodriguez, L. Vasquez, D. Costa, A. Romero and A. Santos, Chemosphere, 101, 86 (2014).

    Article  CAS  PubMed  Google Scholar 

  46. Y. Ji, Y. Fan, K. Liu, D. Kong and J. Lu, Water Res., 87, 1 (2015).

    Article  CAS  PubMed  Google Scholar 

  47. Y.Q. Zhang, X.Z. Du and W.L. Huang, Chinese Chem. Lett., 22, 358 (2011).

    Article  CAS  Google Scholar 

  48. M. Nüchter, U. Müller, B. Ondruschka, A. Tied and W. Lautenschläger, Chem. Eng. Technol., 26, 1207 (2003).

    Article  CAS  Google Scholar 

  49. F. Langa, P. de la Cruz, A. de la Hoz, A. Díaz-Ortiz and E. Díez-Barra, Contemp. Org. Synth., 4, 373 (1997).

    Article  CAS  Google Scholar 

  50. L. W. Matzek and K. E. Carter, Chemosphere, 151, 178 (2016).

    Article  CAS  PubMed  Google Scholar 

  51. A. Veksha, P. Pandya and J. M. Hill, J. Environ. Chem. Eng., 3, 1452 (2015).

    Article  CAS  Google Scholar 

  52. A. de la Hoz, A. Díaz-Ortiz and A. Moreno, J. Microw. Power Electromagn Energy, 41, 44 (2007).

    PubMed  Google Scholar 

  53. R. J. Jachuck, D. K. Selvaraj and R. S. Varma, Green Chem., 8, 29 (2006).

    Article  CAS  Google Scholar 

  54. J. Méndez-Díaz, M. Sanchez-Polo, J. Rivera-Utrila and M. I. Bautista-Toledo, Water Res., 43, 1621 (2009).

    Article  PubMed  CAS  Google Scholar 

  55. J. Rivera-Utrilla, J. Méndez-Díaz, M. Sanchez-Polo, M. A. Ferro-Garcia and I. Baustista-Toledo, Water Res., 40, 1717 (2006).

    Article  CAS  PubMed  Google Scholar 

  56. Y. Deng and C.M. Ezyske, Water Res., 45, 6189 (2011).

    Article  CAS  PubMed  Google Scholar 

  57. J. Méndez-Díaz, M. Sánchez-Polo, J. Rivera-Utrilla, S. Canonica and U. von Gunten, Chem. Eng. J., 163, 300 (2010).

    Article  CAS  Google Scholar 

  58. D. Zhou, H. Zhang and L. Chen, J. Chem. Technol. Biotechnol., 90, 775 (2015).

    Article  CAS  Google Scholar 

  59. C. Liang and H. Su, Ind. Eng. Chem. Res., 48, 5558 (2009).

    Article  CAS  Google Scholar 

  60. Y. Liu, X. He, Y. Fu and D.D. Dionysiou, J. Hazard. Mater., 305, 229 (2016).

    Article  CAS  PubMed  Google Scholar 

  61. H. Hori, A. Yamamoto, E. Hayakawa, S. Taniyasu, N. Yamashita, S. Kutsuna, H. Kiatagawa and R. Arakawa, Environ. Sci. Technol., 39, 2383 (2005).

    Article  CAS  PubMed  Google Scholar 

  62. C. S. Liu, C. P. Higgins, F. Wang and K. Shih, Sep. Purif. Technol., 91, 46 (2012).

    Article  CAS  Google Scholar 

  63. L. Bo, X. Quan, S. Chen, H. Zhao and Y. Zhao, Water Res., 40, 3061 (2006).

    Article  CAS  PubMed  Google Scholar 

  64. J. Tierney and J. Westman, Tetrahedron, 57, 9225 (2001).

    Article  Google Scholar 

  65. N. Remya and J. Lin, Chem. Eng. J., 166, 797 (2011).

    Article  CAS  Google Scholar 

  66. N. Daneshvar, A. Aleboyeh and A. R. Khataee, Chemosphere, 59, 761 (2005).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge University Grant Commission for assistance under UGC-NRC, at the Institute of Chemical Technology, Mumbai, Maharashtra, India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Parag Ratnakar Gogate.

Ethics declarations

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhandari, P.S., Gogate, P.R. Microwave assisted persulfate induced degradation of sodium dodecyl benzene sulfonate. Korean J. Chem. Eng. 36, 2000–2007 (2019). https://doi.org/10.1007/s11814-019-0390-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-019-0390-z

Keywords

Navigation