Skip to main content
Log in

Effect of emulsified polymer binders on the performance of activated carbon electrochemical double-layer capacitors

  • Materials (Organic, Inorganic, Electronic, Thin Films)
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

The electrochemical properties of two water-emulsified polymers, styrene-butadiene rubber, and polytetrafluoroethylene, on activated carbon electrochemical capacitors were systematically compared. All electrodes were fabricated with different ratios of styrene-butadiene rubber and polytetrafluoroethylene: 4 : 0, 3 : 1, 2 : 2, and 1 : 3. A good dispersion of styrene-butadiene rubber nanoparticles maintains mesopores in activated carbon, whereas an increase in polytetrafluoroethylene binder content in the electrodes reduces mesoporous surface area significantly due to the lump polytetrafluoroethylene structure coagulated by smashed particles in water. The relatively strong adhesion of the styrene-butadiene rubber binder also leads to better cyclability for extremely long cycles and the rate capability with various current densities at room temperature. At a high temperature of 60 °C, however, the electrodes containing polytetrafluoroethylene binder showed comparable high specific capacitance due to the high thermal stability of polytetrafluoroethylene.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. Cendrowski, W. Kukulka, T. Kedzierski, S. Zhang and E. Mijowska, Nanomaterials, 8, 1 (2018).

    Article  Google Scholar 

  2. S. Parulekar, S. S. R. M. Holmukhe and P. B. Karandikar, Int. J. Eng. Tech., 7, 313 (2018).

    Article  Google Scholar 

  3. Y. Gao, Nanoscale Res. Lett., 12, 387 (2017).

    Article  Google Scholar 

  4. Y. Jiao, C. Qu, B. Zhao, Z. Liang, H. Chang, S. Kumar, R. Zou, M. Liu and K. S. Walton, ACS Appl. Energy Mater., 2, 5029 (2019).

    Article  CAS  Google Scholar 

  5. Q. Abbas, D. Pajak, E. Frąckowiak and F. Béguin, Electrochim. Acta, 140, 132 (2014).

    Article  CAS  Google Scholar 

  6. K.-C. Tsay, L. Zhang and J. Zhang, Electrochim. Acta, 60, 428 (2012).

    Article  CAS  Google Scholar 

  7. S. Paul, K. S. Choi, D. J. Lee, S. Sudhagar and Y. S. Kang, Electrochim. Acta, 78, 649 (2012).

    Article  CAS  Google Scholar 

  8. M. Aslan, D. Weingarth, N. Jäckel, J. S. Atchison, I. Grobelsek and V. Presser, J. Power Sources, 266, 374 (2014).

    Article  CAS  Google Scholar 

  9. K. Lia, N. Maffei and E. Entchev, J. Solid State Electrochem., 18, 2535 (2014).

    Google Scholar 

  10. A. Eftekhari, L. Li and Y. Yang, J. Power Sources, 347, 86 (2017).

    Article  CAS  Google Scholar 

  11. Y. Han and L. Dai, Macromol. Chem. Phys., 220, 1800355 (2019).

    Article  Google Scholar 

  12. Y. Wang, Y. Ding, X. Guo and G. Yu, Nano Res., 12, 1978 (2019).

    Article  CAS  Google Scholar 

  13. F. Jeschull, D. Brandell, M. Wohlfahrt-Mehrens and M. Memm, Energy Technol., 5, 2108 (2017).

    Article  CAS  Google Scholar 

  14. R. Wang, L. Feng, W. Yang, Y. Zhang, Y. Zhang, W. Bai, B. Liu, W. Zhang, Y. Chuan, Z. Zheng and H. Guan, Nanoscale Res. Lett., 12, 575 (2017).

    Article  Google Scholar 

  15. S. Chauque, F. Y. Oliva, O. R. Cámara and R. M. Torresi, J. Solid State Electrochem., 22, 3589 (2018).

    Article  CAS  Google Scholar 

  16. Y. Bai, R. B. Rakhi, W. Chen and H. N. Alshareef, J. Power Sources, 233, 313 (2013).

    Article  CAS  Google Scholar 

  17. H. Xu, B. Gao, H. Cao, X. Chen, L. Yu, K. Wu, L. Sun, X. Peng and J. Fu, J. Nanomaterials, 2014, 1 (2014).

    Google Scholar 

  18. C. Saka, J. Anal. Appl. Pyrolysis, 95, 21 (2012).

    Article  CAS  Google Scholar 

  19. C.-M. Wang, C.-Y. Wen, Y.-C. Chen, J.-Y. Chang, C.-W. Ho, K.-S. Kao, W-C. Shih, C.-M. Chiu and Y.-A. Shen, in The 3rdInternational Conference on Industrial Application Engineering 2015 (ICI-AE2015) (2015).

  20. W.-C. Liao, F.-S. Liao, C.-T. Tsai and Y.-P. Yang, China Steel Technical Report, 25, 36 (2012).

    Google Scholar 

  21. I. Kovalenko, B. Zdyrko, A. Magasinski, B. Hertzberg, Z. Milicev, R. Burtovyy, I. Luzinov and G. Yushin, Science, 334, 75 (2011).

    Article  CAS  Google Scholar 

  22. X. Pan, G. Ren, M. N. F. Hoque, S. Bayne, K. Zhu and Z. Fan, Adv. Mater. Interfaces, 1, 1400398 (2014).

    Article  Google Scholar 

  23. H. Wu, Z. Lou, H. Yang and G. Shen, Nanoscale, 7, 1921 (2015).

    Article  CAS  Google Scholar 

  24. P. Zhao, N. Soin, K. Prashanthi, J. Chen, S. Dong, E. Zhou, Z. Zhu, A. A. Narasimulu, C. D. Montemagno, L. Yu and J. Luo, ACS Appl. Mater. Interfaces, 10, 5880 (2018).

    Article  CAS  Google Scholar 

  25. J. W. Nicholson, The Chemistry of Polymers, Royal Society of Chemistry (2012).

  26. M. Conte, B. Pinedo and A. Igartua, Tribol. Int., 74, 1 (2014).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was financially supported by the Ministry of Trade, Industry, and Energy (MOTIE), Korea, under the “Regional Specialized Industry Development Program” supervised by the Korea Institute for Advancement of Technology (KIAT) (R0005989).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eun-Suok Oh.

Supporting Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, S., Gendensuren, B., Kim, B. et al. Effect of emulsified polymer binders on the performance of activated carbon electrochemical double-layer capacitors. Korean J. Chem. Eng. 36, 1940–1947 (2019). https://doi.org/10.1007/s11814-019-0388-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-019-0388-6

Keywords

Navigation