Skip to main content
Log in

Evaluation on bioaccessibility of arsenic in the arsenic-contaminated soil

  • Rapid Communication
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

Korea Ministry of Environment regulates the soil quality based on the pseudo-total content of metals extracted by aqua-regia, and the concentration of metals has been used in the risk assessment of the contaminated site. The pseudo-total content of metals can be accepted conservatively as a potentially risky concentration of metals in the soil. However, only some portion of metals in the soil are absorbed by plants, animals, and human beings, and the pseudo-total content used in the risk assessment tend to overestimate the risk of metal contamination. Therefore, the pseudo-total content does not reflect the real risk of the contamination. Bioavailability and bioaccessibility can be alternatives for the pseudo-total content to estimate the reasonable risk. Bioaccessible concentration can be analyzed as in-vitro by the amounts of metals extracted in the gastrointestinal situation, and the bioaccessible concentration is the maximum amount of metals to be absorbed. The bioaccessible concentration of As was evaluated, compared with the pseudo-total concentration of As, and the correlation between the concentration of As and physicochemical properties of soil was analyzed. The bioaccessible concentration can be estimated by the labile fractions of As, and Si, Al, and Mn content decrease the bioaccessible concentration of As.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. J. S. Yang, J. M. Hwang, K. Baek and M. J. Kwon, Korean Chem. Eng. Res., 51, 745 (2013).

    Article  CAS  Google Scholar 

  2. J. Son, J. G. Kim, S. Hyun and K. Cho, Environ. Pollut., 249, 1081 (2019).

    Article  CAS  Google Scholar 

  3. K. Yang, J. Im, S. Jeong and K. Nam, Environ. Res., 137, 78 (2015).

    Article  CAS  Google Scholar 

  4. K. J. Kim, J. C. Yoo, J. S. Yang and K. Baek, Korean Chem. Eng. Res., 51, 733 (2013).

    Article  CAS  Google Scholar 

  5. X. S. Luo, S. Yu and X. D. Li, Appl. Geochem., 27, 995 (2012).

    Article  CAS  Google Scholar 

  6. L. J. Ehlers and R. G. Luthy, Environ. Sci. Technol., 37, 295A (2003).

    Article  CAS  Google Scholar 

  7. Y.-H. Park, Environ. Policy, 25, 183 (2017).

    Google Scholar 

  8. M.-H. Cho, D.-H. Kim and K. Baek, J. Soil Groundwater Environ., 22, 48 (2017).

    Google Scholar 

  9. J. McGeer, G. Henningsen, R. Nanno, N. Fisher, K. Sappington and J. Drexler, Issue paper on the bioavailability and bioaccumulation of metals, US EPA, Washington DC (2004).

    Google Scholar 

  10. M. Izquierdo, E. De Miguel, M. F. Ortega and J. Mingot, Chemosphere, 135, 312 (2015).

    Article  CAS  Google Scholar 

  11. A. L. Juhasz, J. Weber, E. Smith, R. Naidu, M. Rees, A. Rofe, T. Kuchel and L. Sansom, Environ. Sci. Technol., 43, 9487 (2009).

    Article  CAS  Google Scholar 

  12. J. Thoming and W. Calmano, Acta Hydroch. et Hydrob., 26, 338 (1998).

    Article  Google Scholar 

  13. Q. Xia, C. Peng, D. Lamb, M. Mallavarapu, R. Naidu and J. C. Ng, Chemosphere, 147, 444 (2016).

    Article  CAS  Google Scholar 

  14. S. Kuppusamy, K. Venkateswarlu, M. Megharaj, S. Mayilswami and Y. B. Lee, Chemosphere, 186, 607 (2017).

    Article  CAS  Google Scholar 

  15. S. W. Casteel, R. P. Cowart, C. P. Weis, G. M. Henningsen, E. Hoffman, W. J. Brattin, R. E. Guzman, M. F. Starost, J. T. Payne, S. L. Stockham, S. V. Becker, J. W. Drexler and J. R. Turk, Fundam. Appl. Toxicol., 36, 177 (1997).

    Article  CAS  Google Scholar 

  16. M. V. Ruby, R. Schoof, W. Brattin, M. Goldade, G. Post, M. Harnois, D. E. Mosby, S. W. Casteel, W. Berti, M. Carpenter, D. Edwards, D. Cragin and W. Chappell, Environ. Sci. Technol., 33, 3697 (1999).

    Article  CAS  Google Scholar 

  17. R. R. Rodriguez and N. T. Basta, Environ. Sci. Technol., 33, 642 (1999).

    Article  CAS  Google Scholar 

  18. USEPA, US Environmental Protection Agency, Office of Superfund Remediation and Technology Innovation. OLEM 9200.2-164 (2017).

  19. K. M. Ellickson, R. J. Meeker, M. A. Gallo, B. T. Buckley and P. J. Lioy, Arch. Environ. Contam. Toxicol., 40, 128 (2001).

    Article  CAS  Google Scholar 

  20. J. C. Ng, A. Juhasz, E. Smith and R. Naidu, Environ. Sci. Pollut. Res., 22, 8802 (2015).

    Article  Google Scholar 

  21. S. Denys, J. Caboche, K. Tack, G. Rychen, J. Wragg, M. Cave, C. Jondreville and C. Feidt, Environ. Sci. Technol., 46, 6252 (2012).

    Article  CAS  Google Scholar 

  22. P. Sanderson, R. Naidu, N. Bolan, M. Bowman and S. McLure, Sci. Total Environ., 438, 452 (2012).

    Article  CAS  Google Scholar 

  23. S. A. Morman, G. S. Plumlee and D. B. Smith, Appl. Geochem., 24, 1454 (2009).

    Article  CAS  Google Scholar 

  24. R. M. Molina, L. A. Schaider, T. C. Donaghey, J. P. Shine and J. D. Brain, Environ. Pollut., 182, 217 (2013).

    Article  CAS  Google Scholar 

  25. M. Chen and L. Q. Ma, Soil Sci. Soc. Am. J., 65, 491 (2001).

    Article  CAS  Google Scholar 

  26. G. S. Yoon, J. C. Yoo, S.-H. Ko, M.-H. Shim, M.-H. Cho and K. Baek, J. Soil Groundwater Environ., 22, 27 (2017).

    Article  Google Scholar 

  27. W. W. Wenzel, N. Kirchbaumer, T. Prohaska, G. Stingeder, E. Lombi and D. C. Adriano, Anal. Chim. Acta, 436, 309 (2001).

    Article  CAS  Google Scholar 

  28. M. E. Lee, E. K. Jeon, D. C. W. Tsang and K. Baek, J. Hazard. Mater., 354, 91 (2018).

    Article  CAS  Google Scholar 

  29. K. Kim, S. H. Kim, G. Y. Jeong and R. H. Kim, J. Hazard. Mater., 199, 25 (2012).

    Article  Google Scholar 

  30. S. Dixit and J. G. Hering, Environ. Sci. Technol., 37, 4182 (2003).

    Article  CAS  Google Scholar 

  31. C. S. Jeon, S. W. Park, K. Baek, J. S. Yang and J. G. Park, Korean J. Chem. Eng., 29, 1171 (2012).

    Article  CAS  Google Scholar 

  32. E. J. Kim, J. C. Yoo and K. Baek, Environ. Pollut., 186, 29 (2014).

    Article  CAS  Google Scholar 

  33. N. E. Keon, C. H. Swartz, D. J. Brabander, C. F. Harvey and H. F. Hemond, Environ. Sci. Technol., 35, 2778 (2001).

    Article  CAS  Google Scholar 

  34. L. Beesley, E. Moreno-Jimenez, R. Clemente, N. Lepp and N. Dickinson, Environ. Pollut., 158, 155 (2010).

    Article  CAS  Google Scholar 

  35. W. Hartley, R. Edwards and N. W. Lepp, Environ. Pollut., 131, 495 (2004).

    Article  CAS  Google Scholar 

  36. S. Bagherifam, A. Lakzian, A. Fotovat, R. Khorasani and S. Komarneni, J. Hazard. Mater., 273, 247 (2014).

    Article  CAS  Google Scholar 

  37. H. B. Kim, S. H. Kim, E. K. Jeon, D. H. Kim, D. C. W. Tsang, D. S. Alessi, E. E. Kwon and K. Baek, Sci. Total Environ., 636, 1241 (2018).

    Article  CAS  Google Scholar 

Download references

Acknowledgement

This work was supported by Chonbuk National University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kitae Baek.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Min, SJ., Kim, HB., Kim, SH. et al. Evaluation on bioaccessibility of arsenic in the arsenic-contaminated soil. Korean J. Chem. Eng. 36, 1780–1784 (2019). https://doi.org/10.1007/s11814-019-0383-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-019-0383-y

Keywords

Navigation