Skip to main content
Log in

Enhanced oxygen evolution reaction over glassy carbon electrode modified with NiOx and Fe3O4

  • Materials (Organic, Inorganic, Electronic, Thin Films)
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

Magnetite iron oxide (Fe3O4)/nickel oxide (NiOx) modified glassy carbon (GC) electrode shows enhancement of oxygen evolution reaction (OER) compared to GC electrode modified with single NiOx or Fe3O4 nanoparticles. Many techniques such as linear and cyclic sweep voltammetry, electrochemical impedance spectroscopy (EIS) have been employed. Field-emission scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDX) are both used for characterization of the electrocatalysts. Effect of loading amount of both NiOx and Fe3O4 and the order of deposition on the OER was studied. A significant improvement of the electrocatalytic properties of the Fe3O4/NiOx binary catalyst modified GC is obtained when NiOx is electrodeposited on GC/Fe3O4 (i.e. GC/Fe3O4/NiOx) compared to GC/NiOx/Fe3O4 (where NiOx is deposited first on the GC then Fe3O4). The use of GC/Fe3O4/NiOx (where Fe3O4 is deposited first on the GC then NiOx) for OER in alkaline solution support higher currents and consequently negative shifts of the onset potential of OER compared to that of GC/NiOx or GC/Fe3O4. The obtained electrochemical impedance parameters confirmed the above conclusions. Tafel parameters confirm the superior activity of GC/Fe3O4/NiOx and give insight into the mechanism of the OER on the above electrodes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. X. Liu, Z. Sun, S. Cui and P. Du, Electrochim. Acta, 187, 381 (2016).

    CAS  Google Scholar 

  2. M. Roca-Ayats, E. Herreros, G. García, M. A. Pena and M. V. Martínez-Huerta, Appl. Catal. B: Environ., 183, 53 (2016).

    CAS  Google Scholar 

  3. D. Chen and S. D. Minteer, J. Power Sources, 284, 27 (2015).

    CAS  Google Scholar 

  4. Y. Liang, Q. Liu, A. M. Asiri, X. Sun and Y. He, Int. J. Hydrogen Energy, 40, 13258 (2015).

    CAS  Google Scholar 

  5. B. B. Zhang, J. C. Xu, P. F. Wang, Y. B. Han, B. Hong, H. X. Jin, D. F. Jin, X. L. Peng, J. Li, J. Gong, H. L. Ge, Z. W. Zhu and X. Q. Wang, J. Alloys Compd., 662, 348 (2016).

    CAS  Google Scholar 

  6. M. Gong, Y. G. Li, H. L. Wang, Y. Y. Liang, J. Z. Wu, J. G. Zhou, J. Wang, T. Regier, F. Wei and H. J. Dai, J. Am. Chem. Soc., 135, 8452 (2013).

    CAS  PubMed  Google Scholar 

  7. K. Akihiko and M. Yugo, Chem. Soc. Rev., 38, 253 (2009).

    Google Scholar 

  8. F. Y. Cheng and J. Chen, Chem. Soc. Rev., 41, 2172 (2012).

    CAS  PubMed  Google Scholar 

  9. Y. C. Lu, Z. C. Xu, H. A. Gasteiger, S. L. Chen, K. Hamad-Schifferli and Y. Shao-Horn, J. Am. Chem. Soc., 132, 12170 (2010).

    CAS  PubMed  Google Scholar 

  10. M. E. G. Lyons and M. P. Brandon, J. Electroanal. Chem., 641, 119 (2010).

    CAS  Google Scholar 

  11. Y. Zhang, X. Cao, H. Yuan, W. Zhang and Z. Zhou, Int. J. Hydrogen Energy, 24, 529 (1999).

    Google Scholar 

  12. W. J. King and A. C. Tseung, Electrochim. Acta, 19, 493 (1974).

    CAS  Google Scholar 

  13. J. Haenen, W. Visscher and E. Barendrecht, J. Electroanal. Chem., 208, 297 (1986).

    CAS  Google Scholar 

  14. Y. M. Lee, J. Suntivich, K. J. May, E. E. Perry and Y. Shao-Horn, J. Phys. Chem. Lett., 3, 399 (2012).

    CAS  PubMed  Google Scholar 

  15. W. H. Lee and H. Kim, Catal. Comm., 12, 408 (2011).

    CAS  Google Scholar 

  16. W. Hu, Y. Q. Wang, X. H. Hu, Y. Q. Zhou and S. L. Chen, J. Mater. Chem., 22, 6010 (2012).

    CAS  Google Scholar 

  17. J. Suntivich, K. J. May, H. A. Gasteiger, J. B. Goodenough and S. H. Yang, Science, 334, 1383 (2011).

    CAS  PubMed  Google Scholar 

  18. C. Jin, X. Cao, L. Zhang, C. Zhangand, R. Yang, J. Power Sources, 241, 225 (2013).

    CAS  Google Scholar 

  19. M. R. Gao, Y. F. Xu, J. Jiang, Y. R. Zheng and S. H. Yu, J. Am. Chem. Soc., 134, 2930 (2012).

    CAS  PubMed  Google Scholar 

  20. D. K. Bediako, B. Lassalle-Kaiser, Y. Surendranath, J. Yano, V. K. Yachandra and D. G. Nocera, J. Am. Chem. Soc., 134, 6801 (2012).

    CAS  PubMed  Google Scholar 

  21. K. Kadakia, M. K. Datta, P. H. Jampani, S. K. Park and P. N. Kumta, J. Power Sources, 222, 313 (2013).

    CAS  Google Scholar 

  22. B. G. Lu, D. X. Cao, P. Wang, G. L. Wang and Y. Y. Gao, Int. J. Hydrogen Energy, 36, 72 (2011).

    CAS  Google Scholar 

  23. W. Bian, Z. Yang, P. Strasser and R. Yang, J. Power Sources, 250, 196 (2014).

    CAS  Google Scholar 

  24. B. Kumar, S. Saha, K. Ojha and A. K. Ganguli, Mater. Res. Bull., 64, 283 (2015).

    CAS  Google Scholar 

  25. A. S. Danial, M. M. Saleh, S. A. Salih and M. I. Awad, J. Power Sources, 293, 101 (2015).

    CAS  Google Scholar 

  26. A. M. Ghonim, B. E. El-Anadouli and M. M. Saleh, Electrochim. Acta, 114, 713 (2013).

    CAS  Google Scholar 

  27. R. H. Tammam, A. M. Fekry and M. M. Saleh, Int. J. Hydrogen Energy, 40, 275 (2015).

    CAS  Google Scholar 

  28. R.M.A. Hameed and R.M. El-Sherif, Appl. Catal. B: Environ., 162, 217 (2015).

    Google Scholar 

  29. M. Görlin, M. Gliech, J. F. de Araújo, S. Dresp, A. Bergmann and P. Strasser, Catal. Today, 262, 65 (2016).

    Google Scholar 

  30. S. Yoon, J.-Y. Yun, J.-H. Lim and B. Yoo, J. Alloys Compd., 693, 964 (2017).

    CAS  Google Scholar 

  31. B. P. Lu, B. Jing, X. J. Bo, L. D. Zhu and L. P. Guo, Electrochim. Acta, 55, 8724 (2010).

    CAS  Google Scholar 

  32. D. A. Corrigan, J. Electrochem. Soc., 134, 377 (1987).

    CAS  Google Scholar 

  33. F. Dionigi and P. Strasser, Adv. Energy Mater., 6, 1600621 (2016).

    Google Scholar 

  34. J. R. Galán-Mascarós, Chem. Electrochem., 2, 37 (2015).

    Google Scholar 

  35. I. Roger and M. D. Symes, J. Mater. Chem., 4, 6724 (2016).

    CAS  Google Scholar 

  36. I. Roger, M. A. Shipman and M. D. Symes, Nat. Rev. Chem., 1, 0003 (2017).

    CAS  Google Scholar 

  37. S. Klaus, Y. Cai, M.W. Louie, L. Trotochaud and A. T. Bell, J. Phys. Chem. C, 119, 7243 (2015).

    CAS  Google Scholar 

  38. A. B. Moghaddam, M. R. Ganjali, R. Dinarvand, T. Razavi, A. A. Saboury, A. A.M. Movahedi and P. Norouz, J. Electroanal. Chem., 614, 83 (2008).

    CAS  Google Scholar 

  39. S. M. El-Refaei, M. M. Saleh and M. I. Awad, J. Power Sources, 223, 125 (2013).

    CAS  Google Scholar 

  40. E. Laouini, Y. Berghoute, J. Douch, H. Mendonca, M. Hamdani and M. I. S. Pereira, J. Appl. Electrochem., 39, 2469 (2009).

    CAS  Google Scholar 

  41. Z. Ding, C. Yang and Q. Wu, Electrochim. Acta, 49, 3155 (2004).

    CAS  Google Scholar 

  42. M. Kumar, R. Awasthi, A. S. K. Sinh and R. N. Singh, Int. J. Hydrogen Energy, 36, 8831 (2011).

    CAS  Google Scholar 

  43. M. Isabel Godinho, M. Alice Catarino, M. I. da Silva Pereira, M. H. Mendonca and F. M. Costa, Electrochim. Acta, 47, 4307 (2002).

    Google Scholar 

  44. M. H. Mendonça, M. I. Godinho, M. A. Catarino, M. I. da Silva Pereira and F. M. Costa, Solid State Sci., 4, 175 (2002).

    Google Scholar 

  45. N. Jiang and H.-M. Meng, Surf. Coat. Technol., 206, 4362 (2012).

    CAS  Google Scholar 

  46. F. Rosalbino, S. Delsante, G. Borzone and G. Scavino, Int. J. Hydrogen Energy, 38, 10170 (2013).

    CAS  Google Scholar 

  47. S. M. El-Refaei, M. M. Saleh and M. I. Awad, J. Solid-State Electrochem., 18, 5 (2014).

    CAS  Google Scholar 

  48. S. M. El-Refaei, M. I. Awad, B. E. El-Anadouli and M. M. Saleh, Electrochim. Acta, 92, 460 (2013).

    CAS  Google Scholar 

  49. J. M. Gonçalves, T. A. Matias, L. P. Saravia, M. Nakamura, J. S. Bernardes, M. Bertotti and K. Araki, Electrochim. Acta, 267, 161 (2018).

    Google Scholar 

  50. L. Trotochaud, S. L. Young, J. K. Ranney and S. W. Boettcher. J. Am. Chem. Soc., 136, 6744 (2014).

    CAS  PubMed  Google Scholar 

  51. Q. Liu, H. Wang, X. Wang, R. Tong, X. Zhou, X. Peng, H. Wang, H. Tao and Z. Zhang. Int J. Hydrogen Energy, 42, 5560 (2017).

    CAS  Google Scholar 

  52. Q. Luo, M. Peng, X. Sun, Y. Luo and A. M. Asiri, Int. J. Hydrogen Energy, 41, 8785 (2016).

    CAS  Google Scholar 

  53. X. Yang, J. Pan, Y. Nie, Y. Sun and P. Wan, Int. J. Hydrogen Energy, 42, 26575 (2017).

    CAS  Google Scholar 

  54. C. Zhang, Y. Xie, H. Deng, C. Zhang, J. W. Su, Y. Dong and J. Lin, Int. J. Hydrogen Energy, 43, 7299 (2018).

    CAS  Google Scholar 

  55. H.B. Hassan and R. H. Tammam, Solid State Ionics, 320, 325 (2018).

    CAS  Google Scholar 

  56. R. H. Tammam and H. B. Hassan, J. Electrochem. Soc., 166, F729 (2019).

    CAS  Google Scholar 

  57. D. D. Macdonald, Electrochim. Acta, 51, 1376 (2006).

    CAS  Google Scholar 

  58. A. M. Fekry and R. H. Tammam, Ind. Eng. Chem. Res. J., 53, 2911 (2014).

    CAS  Google Scholar 

  59. R. H. Tammam and A. M. Fekry, J. Mater. Eng. Perform., 23, 715 (2014).

    CAS  Google Scholar 

  60. E. Gombos, K. Barkács, T. Felföldi, C. Vértes, M. Makó, G. Palkó and G. Záray, Microchem. J., 107, 115 (2013).

    CAS  Google Scholar 

  61. V. K. Sharma, Coord. Chem. Rev., 257, 495 (2013).

    CAS  Google Scholar 

  62. J. Kubisztal and A. Budniok, Int. J. Hydrogen Energy, 33, 4488 (2008).

    CAS  Google Scholar 

  63. D. Cibrev, M. Jankulovska, T. Lana-Villarreal and R. Gómez, Int. J. Hydrogen Energy, 38, 2746 (2013).

    CAS  Google Scholar 

  64. M. F. Kibria and M. S. Mridha, Int. J. Hydrogen Energy, 21, 179 (1996).

    CAS  Google Scholar 

  65. R. H. Tammam and M. M. Saleh, J. Electroanal. Chem., 794, 189 (2017).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reham Helmy Tammam.

Supporting Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tammam, R.H., Fekry, A.M. & Saleh, M.M. Enhanced oxygen evolution reaction over glassy carbon electrode modified with NiOx and Fe3O4. Korean J. Chem. Eng. 36, 1932–1939 (2019). https://doi.org/10.1007/s11814-019-0381-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-019-0381-0

Keywords

Navigation