Skip to main content
Log in

Hazardous As(III) removal using nanoporous activated carbon of waste garlic stem as adsorbent: Kinetic and mass transfer mechanisms

  • Separation Technology, Thermodynamics
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

Nanoporous activated garlic stem carbon (AGSC) was prepared from garlic stem waste and used to remove As(III)from synthetic water under complete batch experiments. Characterization studies of AGSC were performed by FTIR, SEM, EDX, BET, XPS and XRD techniques. Batch adsorption experiments were carried out to study the adsorption of As(III) onto AGSC. Maximum removal of 93.3% of As(III) was obtained at optimum condition of pH 6, the adsorbent dose 5 g/L, equilibrium time 150 min, initial As(III) concentration 400 µg/L and temperature 298 K. Both Langmuir and Temkin isotherm model fitted well to the experimental data as compared to Freundlich isotherm. Kinetics indicated that the adsorption of As(III) was more suitable for pseudo-second-order than pseudo-first-order and Elovich model. The mass transfer mechanism could be described by Weber-Morris and Boyd mass transfer model. The maximum adsorption capacity of AGSC for As(III) removal was found to be 192.30 µg/g. The negative enthalpy and free energy change indicated that the adsorption process of As(III) onto AGSC was exothermic and spontaneous. The negative value of entropy change suggested decreasing randomness at the AGSC-aqueous As(III) interface during As(III) adsorption.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Ayoob, A. K. Gupta and V.T. Bhat, Crit. Rev. Environ. Sci. Technol., 38, 401 (2008).

    CAS  Google Scholar 

  2. Y. Wang and D. C. W Tsang, J. Environ. Sci., 25, 2291 (2013).

    CAS  Google Scholar 

  3. S. M. Cohen, L. L. Arnold, B. D. Beck, A. S. Lewis and M. Eldan, Crit. Rev. Toxicol, 43, 711 (2013).

    CAS  PubMed  Google Scholar 

  4. World Health Organization (WHO)/UNICE, Progress on drinking-water and sanitation (2014).

  5. M. Vithanage, I. Herath, S. Joseph, J. Bundschuh, N. Bolan, Y. S. Ok, M. B. Kirkham and J. Rinklebe, Carbon, 113, 219 (2017).

    CAS  Google Scholar 

  6. P. L. Smedley and D. G. Kinniburgh, Appl. Geochem., 17, 517 (2002).

    CAS  Google Scholar 

  7. A. Kumar, J. Pandey and S. Kumar, Korean J. Chem. Eng., 35(I), 456 (2018).

    CAS  Google Scholar 

  8. T. Nawaz, M. Iqbal, S. Zulfiqar and M. I. Sarwar, Korean J. Chem. Eng., 35(6), 860 (2018).

    Google Scholar 

  9. N. N. Greenwood and A. Earnshaw, Chemistry of the elements, 3thEd., Pergamon Press, Oxford, United Kingdom (1984).

    Google Scholar 

  10. World Health Organization (WHO), Guidelines for Drinking-water Quality, 4thEd. (2011).

  11. P. B. Tchounwou, B. Wilson and A. Ishaque, Rev. Environ. Health, 14, 211 (1999).

    CAS  PubMed  Google Scholar 

  12. J. E. Greenleaf, J. C. Lin and A. K. Sengupta, Environ. Prog., 25, 300 (2006).

    CAS  Google Scholar 

  13. J.W. Wang, D. Bejan and N.J. Bunce, Environ. Sci. Technol., 37, 4500 (2003).

    CAS  PubMed  Google Scholar 

  14. V. Pallier, G. Feuillade-Cathalifaud, B. Serpaud and J. C. Bollinger, J. Colloid Interface Sci., 342, 26 (2011).

    Google Scholar 

  15. W. Wan, T.J. Pepping, T. Banerji, S. Chaudhari and D.E. Giammar, Water Res., 45, 384 (2011).

    CAS  PubMed  Google Scholar 

  16. H. Park and H. Choi, Water Res., 45, 1933 (2011).

    CAS  PubMed  Google Scholar 

  17. S. O. Lesmana, N. Febriana, F. E. Soetaredjo, J. Sunarso and S. Ismadji, Biochem. Eng. J., 44, 19 (2009).

    CAS  Google Scholar 

  18. M. Taheran, M. Naghdi, S. K. Brar, E. J. Knystautas, M. Verma, A. A. Ramirez, R. Y. Surampalli and J. R. Valero, Sci. Total Environ., 571, 772 (2016).

    CAS  PubMed  Google Scholar 

  19. S. Liu, C. Ni, H. Su, H. Liu, R. Chen, P. Li and Y. Wei, RSC Adv., 6, 30840 (2016).

    CAS  Google Scholar 

  20. M. Thommes, K. Kaneko, A. V. Neimark, J. P. Olivier, F. Rodriguez-Reinoso, J. Rouquerol and K. S. W. Sing, Pure Appl. Chem., 87, 1051 (2015).

    CAS  Google Scholar 

  21. L. Li, X.L. Liu, H.Y. Geng, B. Hu, G.W Song and Z.S. Xu, J. Mater. Chem. A, 1, 10292 (2013).

    CAS  Google Scholar 

  22. P. Mondal, C. B. Majumder and B. Mohanty, Ind. Eng. Chem. Res., 46, 2550 (2007).

    CAS  Google Scholar 

  23. B. H. Hameed and A. A. Ahmad, J. Hazard. Mater., 164, 870 (2009).

    CAS  PubMed  Google Scholar 

  24. J. Xua, L. Chena, H. Qu, Y. Jiao, J. Xie and G. Xing, Appl. Surf. Sci., 320, 674 (2014).

    Google Scholar 

  25. M. S. Podder and C. B. Majumdar, J. Mol. Liq., 2, 382 (2015).

    Google Scholar 

  26. C. Saka, J. Anal. Appl. Pyrolysis, 95, 21 (2012).

    CAS  Google Scholar 

  27. A. Swiatkowski, M. Pakula, S. Biniak and M. Walczyk, Carbon, 42, 3057 (2004).

    CAS  Google Scholar 

  28. Y. Su, X. Sun, X. Zhou, C. Dai and Y. Zhang, J. Environ. Sci., 36, 1 (2015).

    CAS  Google Scholar 

  29. H. Trevino-Cordero, L. G. Juarez-Aguilar, D. I. Mendoza-Castillo, V. Hernandez-Montoya, A. Bonilla-Petriciolet and M. A. Montes-Moran, Ind. Crops Prod., 42, 315 (2013).

    CAS  Google Scholar 

  30. S. Biniak, G. Szymanski, J. Siedlewski and A. Swiatkowski, Carbon, 35, 1799 (1997).

    CAS  Google Scholar 

  31. J. H. Zhou, Z.J. Sui, J. Zhu, P. Li, D. Chen, Y.C. Dai and WK. Yuan, Carbon, 45, 785 (2007).

    CAS  Google Scholar 

  32. U. Shafique, A. Ijaz, M. Salman, W Zaman, N. Jamil and R. Rehman, J. Taiwan Inst. Chem. Eng., 43, 256 (2012).

    CAS  Google Scholar 

  33. Z. Gu, J. Fang and B. Deng, Environ. Sci. Technol., 39, 3833 (2005).

    CAS  PubMed  Google Scholar 

  34. J. Youngran, F. Maohong, J. V. Leeuwen and J. F. Belczyk, J. Environ. Sci., 19, 910 (2007).

    Google Scholar 

  35. M. A. Alam, W. A. Shaikh, M. O. Alam, T. Bhattacharya, S. Chakraborty, B. Show and I. Saha, Appl. Water Sci., 8, 198 (2018).

    Google Scholar 

  36. Y. Chammui, P. Sooksamiti, W. Naksata, S. Thiansem and O. Arqueropanyo, Chem. Eng. J., 240, 202 (2014).

    CAS  Google Scholar 

  37. A. E. Nemr, A. Khaled, O. Abdelwahab and A. El-Sikaily, J. Hazard. Mater., 152, 263 (2008).

    PubMed  Google Scholar 

  38. M. D. Meitei and M. N. V Prasad, Ecol. Eng., 71, 308 (2014).

    Google Scholar 

  39. A. Goswami, P. K. Raul and M. K. Purkait, Chem. Eng. Res. Des., 90, 1287 (2012).

    Google Scholar 

  40. H. Li, G. Huang, C. An, J. Hu and S. Yang, Ind. Eng. Chem. Res., 52, 15923 (2013).

    CAS  Google Scholar 

  41. M. K. Mondal, G. Mishra and P. Kumar, J. Sustain. Dev. Energy Water Environ. Syst., 3, 405 (2015).

    Google Scholar 

  42. V. Vadivelan and K. V. Kumar, J. Colloid Interface Sci., 286, 90 (2005).

    CAS  PubMed  Google Scholar 

  43. S. Azizian, J. Colloid Interface Sci., 276, 47 (2004).

    CAS  PubMed  Google Scholar 

  44. S. Srivastava, S. B. Agrawal and M. K. Mondal, Korean J. Chem. Eng., 33, 567 (2016).

    CAS  Google Scholar 

  45. C. Aharoni and F. C. Tompkins, Adv. Catal., 21, 1 (1970).

    CAS  Google Scholar 

  46. R. Narayan, R. P. Meena, A. K. Patel, A. K. Prajapati, S. Srivastava and M. K. Mondal, Environ. Prog. Sustain. Energy, 35, 95 (2015).

    Google Scholar 

  47. Y.F. Lam, L.Y. Lee, S.J. Chua, C.S. Shee and S. Gan, Ecotoxicol. Environ. Saf., 127, 61 (2016).

    CAS  PubMed  Google Scholar 

  48. R. Soni and D. P. Shukla, Chemosphere, 219, 504 (2019).

    CAS  PubMed  Google Scholar 

  49. M. A. Malana, R. B. Qureshi and M. N. Ashiq, Chem. Eng. J., 172, 721 (2011).

    CAS  Google Scholar 

  50. O. S. Thirunavukkarasu, T. Viraraghavan and K. S. Subramanian, Water SA, 29, 161 (2003).

    CAS  Google Scholar 

  51. V. K. Gupta, V. K. Saini and N. Jain, J. Colloid Interface Sci, 288, 55 (2005).

    CAS  PubMed  Google Scholar 

  52. T. Turk and I. Alp, J. Ind. Eng. Chem., 20, 732 (2014).

    CAS  Google Scholar 

  53. N. V Vinh, M. Zafar, S.K. Behera and H.S. Park, Inf. J. Environ. Sci. Technol., 12, 1283 (2015).

    Google Scholar 

  54. D. S. Tavares, C. B. Lopes, J. P. Coelho, M. E. Sanchez, A. I. Garcia, A. C. Duarte, M. Otero and E. Pereira, Water Air Soil Pollut., 223, 2311 (2012).

    CAS  Google Scholar 

  55. M. E. Lee, P. Jeon, J. Kim and K. Baek, Korean J. Chem. Eng., 35(7), 1409 (2018).

    CAS  Google Scholar 

  56. L. Lin, W Qiu, D. Wang, Q. Huang, Z. Song and H. W. Chau, Ecotox. Environ. Safe., 144, 514 (2017).

    CAS  Google Scholar 

  57. U. Maheshwari, B. Mathesan and S. Gupta, Process Saf. Environ. Prot., 98, 198 (2015).

    CAS  Google Scholar 

  58. W J. Weber and J. C. Morris, J. Sanit. Eng. Div., 89, 31 (1993).

    CAS  Google Scholar 

  59. A.B. Albadarina, C. Mangwandi, A.A.H. Al-Muhtaseb, G.M. Walker, S. J. Allena and M. N. M. Ahmad, Chem. Eng. J., 179, 193 (2012).

    Google Scholar 

  60. S. Srivastava, S. B. Agrawal and M. K. Mondal, Ecol. Eng., 85, 56 (2015).

    Google Scholar 

  61. R. Foroutan, R. Mohammadi and B. Ramavandi, Korean J. Chem. Eng., 35(1), 234 (2018).

    CAS  Google Scholar 

  62. T. Keleti, Biochem. J., 209, 277 (1983).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. P. B. Bhaskar, A. K. Gupta, S. Ayoob and S. Kandu, Colloids Surf. A: Physicochemical. Eng. Aspects, 281, 237 (2006).

    Google Scholar 

  64. X. Yu, S. Tong, M. Ge, J. Zuo, C. Cao and W Song, J. Mater. Chem. A, 1, 959 (2013).

    CAS  Google Scholar 

  65. G. Zhang, J. Qu, H. Liu and R. Wu, Water Res., 41, 1921 (2007).

    CAS  PubMed  Google Scholar 

  66. R. Prabhakar and S. R. Samadder, J. Mol. Liq., 250, 192 (2018).

    CAS  Google Scholar 

  67. S. Zhang, H. Niu, Y. Cai, X. Zhao and Y. Shi, Chem. Eng. J., 158, 599 (2010).

    CAS  Google Scholar 

  68. S. R. Chowdhury and E. K. Yanful, J. Environ. Manage., 91, 2238 (2010).

    CAS  PubMed  Google Scholar 

  69. T. G. Asere, K. Verbeken, D. A. Tessema, F. Fufa, C. V. Stevens and G. D. Laing, Environ. Sci. Pollut. Res., 24, 20446 (2017).

    CAS  Google Scholar 

Download references

Acknowledgements

Authors are grateful to Indian Institute of Technology (BHU), Varanasi, India, for providing the necessary facilities related to research work. The authors also express gratitude for the financial assistance provided by MHRD, India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Monoj Kumar Mondal.

Supporting Information

11814_2019_376_MOESM1_ESM.pdf

Hazardous As(III) removal using nanoporous activated carbon of waste garlic stem as adsorbent: Kinetic and mass transfer mechanisms

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Prajapati, A.K., Mondal, M.K. Hazardous As(III) removal using nanoporous activated carbon of waste garlic stem as adsorbent: Kinetic and mass transfer mechanisms. Korean J. Chem. Eng. 36, 1900–1914 (2019). https://doi.org/10.1007/s11814-019-0376-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-019-0376-x

Keywords

Navigation