Electrospun nanofiber filters for highly efficient PM2.5 capture

Abstract

With the recent increase of concern on the health impact of air pollution, there has been growing interest in filtration technologies that can effectively remove fine inhalable particles (PM2.5) in the air with diameters that are generally 2.5 µm or smaller. Among various technologies presented, nanofiber-based filters provide A simple, but effective route to rapidly capture these fine particulate matters. In this review, we briefly introduce the health hazards associated with PM2.5 and highlight the importance of air filtration technology with particular emphasis on nanofiber-based filters prepared via electrospinning. Then, we summarize various fiber materials and additives utilized in electrospun nanofibers to enhance the filtration efficacy. Furthermore, we highlight some of the recent advances in the materials design of electrospun nanofiber filters for PM2.5 removal and discuss the current issues and future perspectives.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    Z. Zhou, Y. Liu, F. Duan, M. Qin, F. Wu, W. Sheng, L. Yang, J. Liu and K. He, PLoS One, 10, 1 (2015).

    Google Scholar 

  2. 2.

    R. B. Finkelman and L. Tian, Int. Geol. Rev., 60, 579 (2018).

    Article  Google Scholar 

  3. 3.

    T. Ahmad, J. Park, S. Keel, J. Yun, U. Lee, Y. Kim and S. Lee, Korean J. Chem. Eng., 35, 1823 (2018).

    CAS  Article  Google Scholar 

  4. 4.

    C. Shim and J. Hong, Energy Policy, 88, 278 (2016).

    CAS  Article  Google Scholar 

  5. 5.

    D. S. Martens, B. Cox, B. G. Janssen, D. B. P. Clemente, A. Gasparrini, C. Vanpoucke, W. Lefebvre, H. A. Roels, M. Plusquin and T. S. Nawrot, JAMA Pediatr., 171, 1160 (2017).

    Article  Google Scholar 

  6. 6.

    Y. Li, A. L. Juhasz, L. Q. Ma and X. Cui, Sci. Total Environ., 650, 56 (2019).

    CAS  Article  Google Scholar 

  7. 7.

    J. H. Leem, S. T. Kim and H. C. Kim, Ann. Occup. Environ. Med., 27, 7 (2015).

    Article  Google Scholar 

  8. 8.

    S. A. Weber, T. Z. Insaf, E. S. Hall, T. O. Talbot, A. K. Huff, Environ. Res., 151, 399 (2016).

    CAS  Article  Google Scholar 

  9. 9.

    A. Jaworek, A. Marchewicz, A. T. Sobczyk and A. Krupa, T. Czech, Prog. Energy Combust. Sci., 67, 206 (2018).

    Article  Google Scholar 

  10. 10.

    M. Babaie, P. Davari, F. Zare, M. M. Rahman, H. Rahimzadeh, Z. Ristovski and R. Brown, IEEE Trans. Plasma Sci., 41, 2349 (2013).

    CAS  Article  Google Scholar 

  11. 11.

    M. Tański, A. Berendt and J. Mizeraczyk, J. Clean. Prod., 226, 74 (2019).

    Article  Google Scholar 

  12. 12.

    Y. Yang, S. Qiao, R. Jin, J. Zhou and X. Quan, Korean J. Chem. Eng., 35, 964 (2018).

    CAS  Article  Google Scholar 

  13. 13.

    M. Park, S. Lee, J. Kim, B. Lee, J. Lee and Y. Ahn, Part. Sci. Technol., 34, 359 (2016).

    CAS  Article  Google Scholar 

  14. 14.

    E. M. Kettleson, J. M. Schriewer, R. M. L. Buller and P. Biswas, Appl. Environ. Microbiol., 79, 1333 (2013).

    CAS  Article  Google Scholar 

  15. 15.

    Y. C. Ahn, S. K. Park, G. T. Kim, Y. J. Hwang, C. G. Lee, H. S. Shin and J. K. Lee, Curr. Appl. Phys., 6, 1030 (2006).

    Article  Google Scholar 

  16. 16.

    S. Zhang, H. Liu, F. Zuo, X. Yin, J. Yu and B. Ding, Small, 3, 1603151 (2017).

    Article  Google Scholar 

  17. 17.

    R. Balgis, H. Murata, T. Ogi, M. Kobayashi and L. Bao, ACS Omega, 3, 8271 (2018).

    CAS  Article  Google Scholar 

  18. 18.

    H. Souzandeh, L. Scudiero, Y. Wang and W.-H. Zhong, ACS Sustain. Chem. Eng., 5, 6209 (2017).

    CAS  Article  Google Scholar 

  19. 19.

    N. Hui, X. Sun, S. Niu and X. Luo, ACS Appl. Mater. Interfaces, 9, 2914 (2017).

    CAS  Article  Google Scholar 

  20. 20.

    C. Rao, F. Gu, P. Zhao, N. Sharmin, H. Gu and J. Fu, Sci. Rep., 7, 10366 (2017).

    Article  Google Scholar 

  21. 21.

    P. Zahedi, M. Fallah-darrehchi, S. A. Nadoushan, R. Aeinehvand, L. Bagheri and M. Najafi, Korean J. Chem. Eng., 34, 2110 (2017).

    CAS  Article  Google Scholar 

  22. 22.

    C. Wang, S. Wu, M. Jian, J. Xie, L. Xu, X. Yang, Q. Zheng and Y. Zhang, Nano Res., 9, 2590 (2016).

    Article  Google Scholar 

  23. 23.

    Q. Wang, Y. Bai, J. Xie, Q. Jiang and Y. Qiu, Powder Technol., 292, 54 (2016).

    CAS  Article  Google Scholar 

  24. 24.

    L. Fred Fu and B. A. Dempsey, J. Membr. Sci., 149, 221 (1998).

    CAS  Article  Google Scholar 

  25. 25.

    B. Chakrabarti, P. M. Fine, R. Delfino and C. Sioutas, Atmos. Environ., 38, 3329 (2004).

    CAS  Article  Google Scholar 

  26. 26.

    K. W. Lee and B. Y. H. Liu, Aerosol Sci. Technol., 1, 147 (1982).

    Article  Google Scholar 

  27. 27.

    R. W. Harvey and S. P. Garabedlan, Environ. Sci. Technol., 25, 178 (1991).

    CAS  Article  Google Scholar 

  28. 28.

    C. Yang, Chinese J. Chem. Eng., 20, 1 (2012).

    Article  Google Scholar 

  29. 29.

    C. Zhu, C. H. Lin and C. S. Cheung, Powder Technol., 112, 149 (2000).

    CAS  Article  Google Scholar 

  30. 30.

    T. Li, S. Kheifets, D. Medellin and M. G. Raizen, Science, 328, 1673 (2010).

    CAS  Article  Google Scholar 

  31. 31.

    K. M. Steel and W. J. Koros, Carbon, 41, 253 (2003).

    CAS  Article  Google Scholar 

  32. 32.

    R. A. Yapaulo, E. Wirojsakunchai, T. Orita, D. E. Foster, M. Akard, L. R. Walker and M. J. Lance, Int. J. Engine Res., 10, 287 (2009).

    CAS  Article  Google Scholar 

  33. 33.

    R. Zhang, C. Liu, P.-C. Hsu, C. Zhang, N. Liu, J. Zhang, H. R. Lee, Y. Lu, Y. Qiu, S. Chu and Y. Cui, Nano Lett., 16, 3642 (2016).

    CAS  Article  Google Scholar 

  34. 34.

    Y. Liao, C. H. Loh, M. Tian, R. Wang and A. G. Fane, Prog. Polym. Sci., 77, 69 (2018).

    CAS  Article  Google Scholar 

  35. 35.

    G. Hoek, R. M. Krishnan, R. Beelen, A. Peters, B. Ostro, B. Brunekreef and J. D. Kaufman, Environ. Heal., 12, 43 (2013).

    CAS  Article  Google Scholar 

  36. 36.

    K. A. Miller, D. S. Siscovick, L. Sheppard, K. Shepherd, J. H. Sullivan, G. L. Anderson, J. D. Kaufman, N. Engl. J. Med., 356, 447 (2007).

    CAS  Article  Google Scholar 

  37. 37.

    J. Holopainen, T. Penttinen, E. Santala and M. Ritala, Nanotechnology, 26, 025301 (2015).

    Article  Google Scholar 

  38. 38.

    V. Aravindan, J. Sundaramurthy, P. S. Kumar, Y. S. Lee, S. Ramakrishna and S. Madhavi, Chem. Commun., 51, 2225 (2015).

    CAS  Article  Google Scholar 

  39. 39.

    F. Elahi, W. Lu, G. Guoping and F. Khan, J. Bioengineer & Biomedical Sci., 3, 1000121 (2013).

    Article  Google Scholar 

  40. 40.

    C. J. Thompson, G. G. Chase, A. L. Yarin and D. H. Reneker, Polymer, 48, 6913 (2007).

    CAS  Article  Google Scholar 

  41. 41.

    A. Das, T. M. Schutzius, I. S. Bayer and C. M. Megaridis, Carbon, 50, 1346 (2012).

    CAS  Article  Google Scholar 

  42. 42.

    A. K. Aljehani, M. A. Hussaini, M. A. Hussain, N. S. Alothmany and R. W. Aldhaheri, Middle East Conf. Biomed. Eng., 2, 381 (2014).

    Google Scholar 

  43. 43.

    J.-H. Song, H.-E. Kim and H.-W. Kim, J. Mater. Sci. Mater. Med., 19, 95 (2008).

    CAS  Article  Google Scholar 

  44. 44.

    M. W. Lee, S. An, S. S. Latthe, C. Lee, S. Hong and S. S. Yoon, ACS Appl. Mater. Interfaces, 5, 10597 (2013).

    CAS  Article  Google Scholar 

  45. 45.

    X. Wang and B. S. Hsiao, Curr. Opin. Chem. Eng., 12, 62 (2016).

    Article  Google Scholar 

  46. 46.

    S. Jiang, Y. Chen, G. Duan, C. Mei, A. Greiner and S. Agarwal, Polym. Chem., 9, 268 (2018).

    Google Scholar 

  47. 47.

    K. A. Rieger, N. P. Birch and J. D. Schiffman, J. Mater. Chem. B, 1, 4531 (2013).

    CAS  Article  Google Scholar 

  48. 48.

    B. Zhang, Z.-G. Zhang, X. Yan, X.-X. Wang, H. Zhao, J. Guo, J.-Y. Feng and Y.-Z. Long, Nanoscale, 9, 4154 (2017).

    CAS  Article  Google Scholar 

  49. 49.

    T. Xia, Y. Bian, L. Zhang and C. Chen, Energy Build., 158, 987 (2018).

    Article  Google Scholar 

  50. 50.

    A. Patanaik, V. Jacobs and R. D. Anandjiwala, J. Membr. Sci., 352, 136 (2010).

    CAS  Article  Google Scholar 

  51. 51.

    R. Wakeman, Sep. Purif. Technol., 58, 234 (2007).

    CAS  Article  Google Scholar 

  52. 52.

    Z. Wang, C. Crandall, R. Sahadevan, T. J. Menkhaus and H. Fong, Polymer, 114, 64 (2017).

    CAS  Article  Google Scholar 

  53. 53.

    H. J. Kim, S. J. Park, C. S. Park, T. H. Le, S. Hun Lee, T. H. Ha, H. I. Kim, J. Kim, C. S. Lee, H. Yoon and O. S. Kwon, Chem. Eng. J., 339, 204 (2018).

    CAS  Article  Google Scholar 

  54. 54.

    A. Zucchelli, M. L. Focarete, C. Gualandi and S. Ramakrishna, Polym. Adv. Technol., 22, 339 (2011).

    CAS  Article  Google Scholar 

  55. 55.

    S. Zhang, N. A. Rind, N. Tang, H. Liu, X. Yin, J. Yu and B. Ding, Electrospun Nanofibers for Air Filtration, in: B. Ding, X. Wang, J Yu. Electrospinning: Nanofabrication and Applications, Elsevier, 365 (2019).

  56. 56.

    S. K. Nataraj, K. S. Yang and T. M. Aminabhavi, Prog. Polym. Sci., 37, 487 (2012).

    CAS  Article  Google Scholar 

  57. 57.

    D. Cho, A. Naydich, M. W. Frey and Y. L. Joo, Polymer, 54, 2364 (2013).

    CAS  Article  Google Scholar 

  58. 58.

    Q. Zhang, J. Welch, H. Park, C.-Y. Wu, W. Sigmund and J. C. M. Marijnissen, J. Aerosol Sci., 41, 230 (2010).

    Article  Google Scholar 

  59. 59.

    F. Mokhtari, M. Salehi, F. Zamani, F. Hajiani, F. Zeighami and M. Latifi, Text. Prog., 48, 119 (2016).

    Article  Google Scholar 

  60. 60.

    K. Liu, C. Liu, P.-C. Hsu, J. Xu, B. Kong, T. Wu, R. Zhang, G. Zhou, W. Huang, J. Sun and Y. Cui, ACS Cent. Sci., 4, 894 (2018).

    CAS  Article  Google Scholar 

  61. 61.

    A. Khang, P. Ravishankar, A. Krishnaswamy, P. K. Anderson, S. G. Cone, Z. Liu, X. Qian and K. Balachandran, J. Biomed. Mater. Res. — Part B Appl. Biomater., 105, 2455 (2017).

    CAS  Article  Google Scholar 

  62. 62.

    X. Huang, T. Jiao, Q. Liu, L. Zhang, J. Zhou, B. Li and Q. Peng, Sci. China Mater., 62, 423 (2019).

    CAS  Article  Google Scholar 

  63. 63.

    K. Watanabe, B.-S. Kim and I.-S. Kim, Polym. Rev., 51, 288 (2011).

    CAS  Article  Google Scholar 

  64. 64.

    S. Zhang, H. Liu, X. Yin, J. Yu and B. Ding, ACS Appl. Mater. Interfaces, 8, 8086 (2016).

    CAS  Article  Google Scholar 

  65. 65.

    O. Yildiz, K. Stano, S. Faraji, C. Stone, C. Willis, X. Zhang, J. S. Jur and P. D. Bradford, Nanoscale, 7, 16744 (2015).

    CAS  Article  Google Scholar 

  66. 66.

    M. Nogi, S. Iwamoto, A. N. Nakagaito and H. Yano, Adv. Mater., 21, 1595 (2009).

    CAS  Article  Google Scholar 

  67. 67.

    C. Liu, P.-C. Hsu, H.-W. Lee, M. Ye, G. Zheng, N. Liu, W. Li and Y. Cui, Nat. Commun., 6, 6205 (2015).

    CAS  Article  Google Scholar 

  68. 68.

    H. Wang, X. Zhang, N. Wang, Y. Li, X. Feng, Y. Huang, C. Zhao, Z. Liu, M. Fang, G. Ou, H. Gao, X. Li and H. Wu, Sci. Adv., 3, e1603170 (2017).

    Article  Google Scholar 

  69. 69.

    S. Jeong, H. Cho, S. Han, P. Won, H. Lee, S. Hong, J. Yeo, J. Kwon and S. H. Ko, Nano Lett., 17, 4339 (2017).

    CAS  Article  Google Scholar 

  70. 70.

    X. Zhao, Y. Li, T. Hua, P. Jiang, X. Yin, J. Yu and B. Ding, Small, 13, 1603306 (2017).

    Article  Google Scholar 

  71. 71.

    Y. Bai, C. B. Han, C. He, G. Q. Gu, J. H. Nie, J. J. Shao, T. X. Xiao, C. R. Deng and Z. L. Wang, Adv. Funct. Mater., 28, 1706680 (2018).

    Article  Google Scholar 

  72. 72.

    B. Khalid, X. Bai, H. Wei, Y. Huang, H. Wu and Y. Cui, Nano Lett., 17, 1140 (2017).

    CAS  Article  Google Scholar 

  73. 73.

    Y. Chen, S. Zhang, S. Cao, S. Li, F. Chen, S. Yuan, C. Xu, J. Zhou, X. Feng, X. Ma and B. Wang, Adv. Mater., 29, 1606221 (2017).

    Article  Google Scholar 

  74. 74.

    J. Xu, C. Liu, P.-C. Hsu, K. Liu, R. Zhang, Y. Liu and Y. Cui, Nano Lett., 16, 1270 (2016).

    CAS  Article  Google Scholar 

Download references

Acknowledgements

This work was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF-2018R1D1A1B07041102), and POSCO Green Science Program.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Hyomin Lee.

Additional information

Biography

Hyomin Lee received his B.S. in Chemical and Biological Engineering from Seoul National University (SNU) in 2009. He obtained Ph.D. degree in Chemical Engineering from Massachusetts Institute of Technology (MIT) in 2014. From 2014 to 2017, he worked as a postdoctoral researcher in John A. Paulson School of Engineering and Applied Sciences at Harvard University. In 2017, he joined Pohang University of Science and Technology (POSTECH), where he is currently an assistant professor in the department of chemical engineering. He has been recognized with several awards including AIChE Graduate Student Award (2014), KSIEC New Scientist Award (2018). His research focuses on understanding and controlling the structure and dynamics of soft matter at interfaces and designing new functional materials.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Nam, C., Lee, S., Ryu, M. et al. Electrospun nanofiber filters for highly efficient PM2.5 capture. Korean J. Chem. Eng. 36, 1565–1574 (2019). https://doi.org/10.1007/s11814-019-0370-3

Download citation

Keywords

  • Particulate Matter (PM2.5)
  • Electrospinning
  • Filter
  • Polymeric Materials
  • Nanofiber