Advertisement

Korean Journal of Chemical Engineering

, Volume 36, Issue 10, pp 1565–1574 | Cite as

Electrospun nanofiber filters for highly efficient PM2.5 capture

  • Changwoo Nam
  • Sukyoung Lee
  • Min Ryu
  • Jaewook Lee
  • Hyomin LeeEmail author
Invited Review Paper
  • 26 Downloads

Abstract

With the recent increase of concern on the health impact of air pollution, there has been growing interest in filtration technologies that can effectively remove fine inhalable particles (PM2.5) in the air with diameters that are generally 2.5 µm or smaller. Among various technologies presented, nanofiber-based filters provide A simple, but effective route to rapidly capture these fine particulate matters. In this review, we briefly introduce the health hazards associated with PM2.5 and highlight the importance of air filtration technology with particular emphasis on nanofiber-based filters prepared via electrospinning. Then, we summarize various fiber materials and additives utilized in electrospun nanofibers to enhance the filtration efficacy. Furthermore, we highlight some of the recent advances in the materials design of electrospun nanofiber filters for PM2.5 removal and discuss the current issues and future perspectives.

Keywords

Particulate Matter (PM2.5Electrospinning Filter Polymeric Materials Nanofiber 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

This work was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF-2018R1D1A1B07041102), and POSCO Green Science Program.

References

  1. 1.
    Z. Zhou, Y. Liu, F. Duan, M. Qin, F. Wu, W. Sheng, L. Yang, J. Liu and K. He, PLoS One, 10, 1 (2015).Google Scholar
  2. 2.
    R. B. Finkelman and L. Tian, Int. Geol. Rev., 60, 579 (2018).CrossRefGoogle Scholar
  3. 3.
    T. Ahmad, J. Park, S. Keel, J. Yun, U. Lee, Y. Kim and S. Lee, Korean J. Chem. Eng., 35, 1823 (2018).CrossRefGoogle Scholar
  4. 4.
    C. Shim and J. Hong, Energy Policy, 88, 278 (2016).CrossRefGoogle Scholar
  5. 5.
    D. S. Martens, B. Cox, B. G. Janssen, D. B. P. Clemente, A. Gasparrini, C. Vanpoucke, W. Lefebvre, H. A. Roels, M. Plusquin and T. S. Nawrot, JAMA Pediatr., 171, 1160 (2017).CrossRefGoogle Scholar
  6. 6.
    Y. Li, A. L. Juhasz, L. Q. Ma and X. Cui, Sci. Total Environ., 650, 56 (2019).CrossRefGoogle Scholar
  7. 7.
    J. H. Leem, S. T. Kim and H. C. Kim, Ann. Occup. Environ. Med., 27, 7 (2015).CrossRefGoogle Scholar
  8. 8.
    S. A. Weber, T. Z. Insaf, E. S. Hall, T. O. Talbot, A. K. Huff, Environ. Res., 151, 399 (2016).CrossRefGoogle Scholar
  9. 9.
    A. Jaworek, A. Marchewicz, A. T. Sobczyk and A. Krupa, T. Czech, Prog. Energy Combust. Sci., 67, 206 (2018).CrossRefGoogle Scholar
  10. 10.
    M. Babaie, P. Davari, F. Zare, M. M. Rahman, H. Rahimzadeh, Z. Ristovski and R. Brown, IEEE Trans. Plasma Sci., 41, 2349 (2013).CrossRefGoogle Scholar
  11. 11.
    M. Tański, A. Berendt and J. Mizeraczyk, J. Clean. Prod., 226, 74 (2019).CrossRefGoogle Scholar
  12. 12.
    Y. Yang, S. Qiao, R. Jin, J. Zhou and X. Quan, Korean J. Chem. Eng., 35, 964 (2018).CrossRefGoogle Scholar
  13. 13.
    M. Park, S. Lee, J. Kim, B. Lee, J. Lee and Y. Ahn, Part. Sci. Technol., 34, 359 (2016).CrossRefGoogle Scholar
  14. 14.
    E. M. Kettleson, J. M. Schriewer, R. M. L. Buller and P. Biswas, Appl. Environ. Microbiol., 79, 1333 (2013).CrossRefGoogle Scholar
  15. 15.
    Y. C. Ahn, S. K. Park, G. T. Kim, Y. J. Hwang, C. G. Lee, H. S. Shin and J. K. Lee, Curr. Appl. Phys., 6, 1030 (2006).CrossRefGoogle Scholar
  16. 16.
    S. Zhang, H. Liu, F. Zuo, X. Yin, J. Yu and B. Ding, Small, 3, 1603151 (2017).CrossRefGoogle Scholar
  17. 17.
    R. Balgis, H. Murata, T. Ogi, M. Kobayashi and L. Bao, ACS Omega, 3, 8271 (2018).CrossRefGoogle Scholar
  18. 18.
    H. Souzandeh, L. Scudiero, Y. Wang and W.-H. Zhong, ACS Sustain. Chem. Eng., 5, 6209 (2017).CrossRefGoogle Scholar
  19. 19.
    N. Hui, X. Sun, S. Niu and X. Luo, ACS Appl. Mater. Interfaces, 9, 2914 (2017).CrossRefGoogle Scholar
  20. 20.
    C. Rao, F. Gu, P. Zhao, N. Sharmin, H. Gu and J. Fu, Sci. Rep., 7, 10366 (2017).CrossRefGoogle Scholar
  21. 21.
    P. Zahedi, M. Fallah-darrehchi, S. A. Nadoushan, R. Aeinehvand, L. Bagheri and M. Najafi, Korean J. Chem. Eng., 34, 2110 (2017).CrossRefGoogle Scholar
  22. 22.
    C. Wang, S. Wu, M. Jian, J. Xie, L. Xu, X. Yang, Q. Zheng and Y. Zhang, Nano Res., 9, 2590 (2016).CrossRefGoogle Scholar
  23. 23.
    Q. Wang, Y. Bai, J. Xie, Q. Jiang and Y. Qiu, Powder Technol., 292, 54 (2016).CrossRefGoogle Scholar
  24. 24.
    L. Fred Fu and B. A. Dempsey, J. Membr. Sci., 149, 221 (1998).CrossRefGoogle Scholar
  25. 25.
    B. Chakrabarti, P. M. Fine, R. Delfino and C. Sioutas, Atmos. Environ., 38, 3329 (2004).CrossRefGoogle Scholar
  26. 26.
    K. W. Lee and B. Y. H. Liu, Aerosol Sci. Technol., 1, 147 (1982).CrossRefGoogle Scholar
  27. 27.
    R. W. Harvey and S. P. Garabedlan, Environ. Sci. Technol., 25, 178 (1991).CrossRefGoogle Scholar
  28. 28.
    C. Yang, Chinese J. Chem. Eng., 20, 1 (2012).CrossRefGoogle Scholar
  29. 29.
    C. Zhu, C. H. Lin and C. S. Cheung, Powder Technol., 112, 149 (2000).CrossRefGoogle Scholar
  30. 30.
    T. Li, S. Kheifets, D. Medellin and M. G. Raizen, Science, 328, 1673 (2010).CrossRefGoogle Scholar
  31. 31.
    K. M. Steel and W. J. Koros, Carbon, 41, 253 (2003).CrossRefGoogle Scholar
  32. 32.
    R. A. Yapaulo, E. Wirojsakunchai, T. Orita, D. E. Foster, M. Akard, L. R. Walker and M. J. Lance, Int. J. Engine Res., 10, 287 (2009).CrossRefGoogle Scholar
  33. 33.
    R. Zhang, C. Liu, P.-C. Hsu, C. Zhang, N. Liu, J. Zhang, H. R. Lee, Y. Lu, Y. Qiu, S. Chu and Y. Cui, Nano Lett., 16, 3642 (2016).CrossRefGoogle Scholar
  34. 34.
    Y. Liao, C. H. Loh, M. Tian, R. Wang and A. G. Fane, Prog. Polym. Sci., 77, 69 (2018).CrossRefGoogle Scholar
  35. 35.
    G. Hoek, R. M. Krishnan, R. Beelen, A. Peters, B. Ostro, B. Brunekreef and J. D. Kaufman, Environ. Heal., 12, 43 (2013).CrossRefGoogle Scholar
  36. 36.
    K. A. Miller, D. S. Siscovick, L. Sheppard, K. Shepherd, J. H. Sullivan, G. L. Anderson, J. D. Kaufman, N. Engl. J. Med., 356, 447 (2007).CrossRefGoogle Scholar
  37. 37.
    J. Holopainen, T. Penttinen, E. Santala and M. Ritala, Nanotechnology, 26, 025301 (2015).CrossRefGoogle Scholar
  38. 38.
    V. Aravindan, J. Sundaramurthy, P. S. Kumar, Y. S. Lee, S. Ramakrishna and S. Madhavi, Chem. Commun., 51, 2225 (2015).CrossRefGoogle Scholar
  39. 39.
    F. Elahi, W. Lu, G. Guoping and F. Khan, J. Bioengineer & Biomedical Sci., 3, 1000121 (2013).CrossRefGoogle Scholar
  40. 40.
    C. J. Thompson, G. G. Chase, A. L. Yarin and D. H. Reneker, Polymer, 48, 6913 (2007).CrossRefGoogle Scholar
  41. 41.
    A. Das, T. M. Schutzius, I. S. Bayer and C. M. Megaridis, Carbon, 50, 1346 (2012).CrossRefGoogle Scholar
  42. 42.
    A. K. Aljehani, M. A. Hussaini, M. A. Hussain, N. S. Alothmany and R. W. Aldhaheri, Middle East Conf. Biomed. Eng., 2, 381 (2014).Google Scholar
  43. 43.
    J.-H. Song, H.-E. Kim and H.-W. Kim, J. Mater. Sci. Mater. Med., 19, 95 (2008).CrossRefGoogle Scholar
  44. 44.
    M. W. Lee, S. An, S. S. Latthe, C. Lee, S. Hong and S. S. Yoon, ACS Appl. Mater. Interfaces, 5, 10597 (2013).CrossRefGoogle Scholar
  45. 45.
    X. Wang and B. S. Hsiao, Curr. Opin. Chem. Eng., 12, 62 (2016).CrossRefGoogle Scholar
  46. 46.
    S. Jiang, Y. Chen, G. Duan, C. Mei, A. Greiner and S. Agarwal, Polym. Chem., 9, 268 (2018).Google Scholar
  47. 47.
    K. A. Rieger, N. P. Birch and J. D. Schiffman, J. Mater. Chem. B, 1, 4531 (2013).CrossRefGoogle Scholar
  48. 48.
    B. Zhang, Z.-G. Zhang, X. Yan, X.-X. Wang, H. Zhao, J. Guo, J.-Y. Feng and Y.-Z. Long, Nanoscale, 9, 4154 (2017).CrossRefGoogle Scholar
  49. 49.
    T. Xia, Y. Bian, L. Zhang and C. Chen, Energy Build., 158, 987 (2018).CrossRefGoogle Scholar
  50. 50.
    A. Patanaik, V. Jacobs and R. D. Anandjiwala, J. Membr. Sci., 352, 136 (2010).CrossRefGoogle Scholar
  51. 51.
    R. Wakeman, Sep. Purif. Technol., 58, 234 (2007).CrossRefGoogle Scholar
  52. 52.
    Z. Wang, C. Crandall, R. Sahadevan, T. J. Menkhaus and H. Fong, Polymer, 114, 64 (2017).CrossRefGoogle Scholar
  53. 53.
    H. J. Kim, S. J. Park, C. S. Park, T. H. Le, S. Hun Lee, T. H. Ha, H. I. Kim, J. Kim, C. S. Lee, H. Yoon and O. S. Kwon, Chem. Eng. J., 339, 204 (2018).CrossRefGoogle Scholar
  54. 54.
    A. Zucchelli, M. L. Focarete, C. Gualandi and S. Ramakrishna, Polym. Adv. Technol., 22, 339 (2011).CrossRefGoogle Scholar
  55. 55.
    S. Zhang, N. A. Rind, N. Tang, H. Liu, X. Yin, J. Yu and B. Ding, Electrospun Nanofibers for Air Filtration, in: B. Ding, X. Wang, J Yu. Electrospinning: Nanofabrication and Applications, Elsevier, 365 (2019).Google Scholar
  56. 56.
    S. K. Nataraj, K. S. Yang and T. M. Aminabhavi, Prog. Polym. Sci., 37, 487 (2012).CrossRefGoogle Scholar
  57. 57.
    D. Cho, A. Naydich, M. W. Frey and Y. L. Joo, Polymer, 54, 2364 (2013).CrossRefGoogle Scholar
  58. 58.
    Q. Zhang, J. Welch, H. Park, C.-Y. Wu, W. Sigmund and J. C. M. Marijnissen, J. Aerosol Sci., 41, 230 (2010).CrossRefGoogle Scholar
  59. 59.
    F. Mokhtari, M. Salehi, F. Zamani, F. Hajiani, F. Zeighami and M. Latifi, Text. Prog., 48, 119 (2016).CrossRefGoogle Scholar
  60. 60.
    K. Liu, C. Liu, P.-C. Hsu, J. Xu, B. Kong, T. Wu, R. Zhang, G. Zhou, W. Huang, J. Sun and Y. Cui, ACS Cent. Sci., 4, 894 (2018).CrossRefGoogle Scholar
  61. 61.
    A. Khang, P. Ravishankar, A. Krishnaswamy, P. K. Anderson, S. G. Cone, Z. Liu, X. Qian and K. Balachandran, J. Biomed. Mater. Res. — Part B Appl. Biomater., 105, 2455 (2017).CrossRefGoogle Scholar
  62. 62.
    X. Huang, T. Jiao, Q. Liu, L. Zhang, J. Zhou, B. Li and Q. Peng, Sci. China Mater., 62, 423 (2019).CrossRefGoogle Scholar
  63. 63.
    K. Watanabe, B.-S. Kim and I.-S. Kim, Polym. Rev., 51, 288 (2011).CrossRefGoogle Scholar
  64. 64.
    S. Zhang, H. Liu, X. Yin, J. Yu and B. Ding, ACS Appl. Mater. Interfaces, 8, 8086 (2016).CrossRefGoogle Scholar
  65. 65.
    O. Yildiz, K. Stano, S. Faraji, C. Stone, C. Willis, X. Zhang, J. S. Jur and P. D. Bradford, Nanoscale, 7, 16744 (2015).CrossRefGoogle Scholar
  66. 66.
    M. Nogi, S. Iwamoto, A. N. Nakagaito and H. Yano, Adv. Mater., 21, 1595 (2009).CrossRefGoogle Scholar
  67. 67.
    C. Liu, P.-C. Hsu, H.-W. Lee, M. Ye, G. Zheng, N. Liu, W. Li and Y. Cui, Nat. Commun., 6, 6205 (2015).CrossRefGoogle Scholar
  68. 68.
    H. Wang, X. Zhang, N. Wang, Y. Li, X. Feng, Y. Huang, C. Zhao, Z. Liu, M. Fang, G. Ou, H. Gao, X. Li and H. Wu, Sci. Adv., 3, e1603170 (2017).CrossRefGoogle Scholar
  69. 69.
    S. Jeong, H. Cho, S. Han, P. Won, H. Lee, S. Hong, J. Yeo, J. Kwon and S. H. Ko, Nano Lett., 17, 4339 (2017).CrossRefGoogle Scholar
  70. 70.
    X. Zhao, Y. Li, T. Hua, P. Jiang, X. Yin, J. Yu and B. Ding, Small, 13, 1603306 (2017).CrossRefGoogle Scholar
  71. 71.
    Y. Bai, C. B. Han, C. He, G. Q. Gu, J. H. Nie, J. J. Shao, T. X. Xiao, C. R. Deng and Z. L. Wang, Adv. Funct. Mater., 28, 1706680 (2018).CrossRefGoogle Scholar
  72. 72.
    B. Khalid, X. Bai, H. Wei, Y. Huang, H. Wu and Y. Cui, Nano Lett., 17, 1140 (2017).CrossRefGoogle Scholar
  73. 73.
    Y. Chen, S. Zhang, S. Cao, S. Li, F. Chen, S. Yuan, C. Xu, J. Zhou, X. Feng, X. Ma and B. Wang, Adv. Mater., 29, 1606221 (2017).CrossRefGoogle Scholar
  74. 74.
    J. Xu, C. Liu, P.-C. Hsu, K. Liu, R. Zhang, Y. Liu and Y. Cui, Nano Lett., 16, 1270 (2016).CrossRefGoogle Scholar

Copyright information

© The Korean Institute of Chemical Engineers 2019

Authors and Affiliations

  • Changwoo Nam
    • 1
  • Sukyoung Lee
    • 1
  • Min Ryu
    • 1
  • Jaewook Lee
    • 1
  • Hyomin Lee
    • 1
    Email author
  1. 1.Department of Chemical EngineeringPohang University of Science and Technology, (POSTECH)Pohang, GyeongbukKorea

Personalised recommendations