Skip to main content
Log in

Synthesis conditions of porous clay heterostructure (PCH) optimized for volatile organic compounds (VOC) adsorption

  • Rapid Communication
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

Volatile organic compounds (VOCs) can cause carcinogenic risk, odor problems, and even generation of particulate matter. Adsorption is an effective technique for controlling VOC emissions at the source. In this study, porous clay heterostructure (PCH) was considered as a possible VOC adsorbent, and the synthesis conditions were optimized. The ratio of tetraethyl orthosilicate (TEOS) compared to organoclay and dodecylamine (DDA) was selected as a synthesis condition variable (organoclay: dodecylamine: TEOS=1 : 1 : 30–120). We investigated the change of morphology and porosity of PCH by using a transmission electron microscope, nitrogen adsorption/desorption, and x-ray fluorescence. The porosity of PCH was changed depending on the TEOS ratio. As the ratio of TEOS decreased, the pore size of the PCH also decreased. However, irregular layer expansion was observed due to the swelling of organoclay by DDA in PCH30. To evaluate the possibility of using PCH as an adsorbent for low concentration VOCs, specifically toluene and decane, adsorption experiments were conducted, and it was confirmed that micropores play an essential role for low concentration VOC adsorption. PCH60 was selected as an optimal condition. The toluene and decane adsorption capacity of PCH60 was, respectively, measured as 122.92 mg/g and 886.73 mg/g.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Z. Shareefdeen and A. Singh, Biotechnology for odor and air pollution control, Springer Science & Business media, Berlin, Heidelberg (2005).

    Google Scholar 

  2. M. Tancrède, R. Wilson, L. Zeise and E. A. C. Crouch, Atmos. Environ., 21, 2187 (1987).

    Google Scholar 

  3. R. Iranpour, H. H. J. Cox, M. A. Deshusses and E. D. Schroeder, Environ. Prog. Sustain. Energy, 24, 254 (2005).

    CAS  Google Scholar 

  4. M. Kanakidou, J. H. Seinfeld, S. N. Pandis, I. Barnes, F. J. Dentener, M. C. Facchini, R. Van Dingenen, B. Ervens, A. Nenes, C. J. Nielsen, E. Swietlicki, J. P. Putaud, Y. Balkanski, S. Fuzzi, J. Horth, G. K. Moortgat, R. Winterhalter, C. E. L. Myhre, K. Tsigaridis, E. Vignati, E. G. Stephanou and J. Wilson, Atmos. Chem. Phys., 5, 1053 (2005).

    CAS  Google Scholar 

  5. R. G. Derwent, M. E. Jenkin, S. R. Utembe, D. E. Shallcross, T. P. Murrells and N. R. Passant, Sci. Total Environ., 408, 3374 (2010).

    CAS  PubMed  Google Scholar 

  6. H. Shin, J. Kim, S. Lee and Y. Kim, Environ. Sci. Pollut. Res., 20, 1468 (2013).

    CAS  Google Scholar 

  7. G. Leson and A. M. Winer, J. Air Waste Manage. Assoc., 41, 1045 (1991).

    CAS  PubMed  Google Scholar 

  8. T. Granström, P. Lindberg, J. Nummela, J. Jokela and M. Leisola, Biodegradation, 13, 155 (2002).

    PubMed  Google Scholar 

  9. M. A. Campesi, C. D. Luzi, G. F. Barreto and O. M. Martínez, J. Environ. Manage., 154, 216 (2015).

    CAS  PubMed  Google Scholar 

  10. B.-S. Choi and J. Yi, Chem. Eng. J., 76, 103 (2000).

    CAS  Google Scholar 

  11. Y. Chiang, P. Chiang and C. Huang, Carbon, 39, 523 (2001).

    CAS  Google Scholar 

  12. A. K. Ghoshal and S. D. Manjare, J. Loss Prevent. Proc., 15, 413 (2002).

    Google Scholar 

  13. O. Ioannidou and A. Zabaniotou, Renew. Sust. Energy Rev., 11, 1966 (2007).

    CAS  Google Scholar 

  14. G. E. Strudgeon, B. J. Lewis, W. W. Albury and R. C. Clinger, J. Water Pollut. Control Fed., 52, 2516 (1980).

    CAS  Google Scholar 

  15. L. Zhu, S. Tan and Y. Shi, Clay. Clay Miner., 53, 123 (2005).

    CAS  Google Scholar 

  16. F. Delage, P. Pre and P. LeCloirec, Environ. Sci. Technol., 34, 4816 (2000).

    CAS  Google Scholar 

  17. F. A. Banat, B. Al-Bashir, S. Al-Asheh and O. Hayajneh, Environ. Pollut., 107, 391 (2000).

    CAS  PubMed  Google Scholar 

  18. S. A. Khan, M. A. Khan and Riaz-ur-Rehman, Waste Manage., 15, 271 (1995).

    CAS  Google Scholar 

  19. K. Wang and B. Xing, J. Environ. Qual., 34, 342 (2005).

    CAS  PubMed  Google Scholar 

  20. F. Qu, L. Zhu and K. Yang, J. Hazard. Mater., 170, 7 (2009).

    CAS  PubMed  Google Scholar 

  21. H. He, L. Ma, J. Zhu, R. L. Frost, B. K. G. Theng and F. Bergaya, Appl. Clay Sci., 100, 22 (2014).

    CAS  Google Scholar 

  22. L. Deng, P. Yuan, D. Liu, F. Annabi-Bergaya, J. Zhou, F. Chen and Z. Liu, Appl. Clay Sci., 143, 184 (2017).

    CAS  Google Scholar 

  23. L. B. de Paiva, A. R. Morales and F. R. Valenzuela Díaz, Appl. Clay Sci., 42, 8 (2008).

    Google Scholar 

  24. J. Pires, A. Carvalho and M. B. de Carvalho, Micropor. Mesopor. Mater., 43, 277 (2001).

    CAS  Google Scholar 

  25. T. J. Pinnavaia, A. Galarneau and A. Barodawalla, Nature, 374, 529 (1995).

    Google Scholar 

  26. M. A. Lillo-Ródenas, D. Cazorla-Amorós and A. Linares-Solano, Carbon, 43, 1758 (2005).

    Google Scholar 

  27. S. K. Modak, A. Mandal and D. Chakrabarty, Polym. Composite, 34, 32 (2013).

    CAS  Google Scholar 

  28. Y. Wang, P. Zhang, K. Wen, X. Su, J. Zhu and H. He, Micropor. Mesopor. Mater., 224, 285 (2016).

    CAS  Google Scholar 

  29. K. Kwon, W. Jo, H. Lim and W. Jeong, J. Hazard. Mater., 148, 192 (2007).

    CAS  PubMed  Google Scholar 

  30. J. A. Park, J. K. Kang, J. H. Kim, S. B. Kim, S. Yu and T. H. Kim, Environ. Eng. Res., 20, 133 (2015).

    Google Scholar 

  31. Y. Hu, L. Liu, F. Min, M. Zhang and S. Song, Colloids Surf., A, 434, 281 (2013).

    CAS  Google Scholar 

  32. K. Kosuge, S. Kubo, N. Kikukawa and M. Takemori, Langmuir, 23, 3095 (2007).

    CAS  PubMed  Google Scholar 

  33. K. S. W. Sing, Pure Appl. Chem., 57, 603 (1985).

    CAS  Google Scholar 

  34. H. Chen and D. A. Schiraldi, Polym. Rev., 59, 1 (2019).

    CAS  Google Scholar 

  35. Q. Guo, Y. Liu, G. Qi and W. Jiao, Chem. Eng. Res. Des., 143, 47 (2019).

    CAS  Google Scholar 

  36. A. Amari, M. Chlendi, A. Gannouni and A. Bellagi, Appl. Clay Sci., 47, 457 (2010).

    CAS  Google Scholar 

  37. J. Benkhedda, J. Jaubert, D. Barth and L. Perrin, J. Chem. Eng. Data, 45, 650 (2000).

    CAS  Google Scholar 

  38. C. Wang, K. Chang, T. Chung and H. Wu, J. Chem. Eng. Data, 49, 527 (2004).

    CAS  Google Scholar 

  39. M. A. Lillo-Ródenas, A. J. Fletcher, K. M. Thomas, D. Cazorla-Amorös and A. Linares-Solano, Carbon, 44, 1455 (2006).

    Google Scholar 

  40. J. Zhang, S. Lu, J. Li, P. Zhang, H. Xue, X. Zhao and L. Xie, Energies, 10, 1586 (2017).

    Google Scholar 

  41. I. Ushiki, M. Ota, Y. Sato and H. Inomata, Fluid Phase Equilib., 375, 293 (2014).

    CAS  Google Scholar 

  42. B. Azambre, A. Westermann, G. Finqueneisel, F. Can and J. D. Comparot, J. Phys. Chem. C, 119, 315 (2015).

    CAS  Google Scholar 

  43. I. Ushiki, M. Ota, Y. Sato and H. Inomata, Fluid Phase Equilib., 344, 101 (2013).

    CAS  Google Scholar 

  44. N. Takahashi, I. Ushiki, Y. Hamabe, M. Ota, Y. Sato and H. Inomata, J. Supercrit. Fluids, 107, 226 (2016).

    CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by the Technology Development Program to Solve Climate Changes of the National Research Foundation (NRF) funded by the Ministry of Science, ICT (2017M1A2 A2086647).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuhoon Hwang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, P., Song, M., Kim, D. et al. Synthesis conditions of porous clay heterostructure (PCH) optimized for volatile organic compounds (VOC) adsorption. Korean J. Chem. Eng. 36, 1806–1813 (2019). https://doi.org/10.1007/s11814-019-0369-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-019-0369-9

Keywords

Navigation