Skip to main content
Log in

Development of magnetically separable Cu catalyst supported by pre-treated steel slag

  • Rapid Communication
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

Wastewater contaminated with organic compounds is a serious problem; therefore, many catalysts, especially copper catalysts, have been developed to treat it and remove contaminants before discharge. However, such separation and reuse of these catalysts is often challenging. Steel slag (SS), a by-product of steel production, is produced in large quantities and requires careful disposal. Therefore, in this study, we developed a magnetically recyclable copper catalyst utilizing pre-treated magnetic steel slag (MSS) as a support. First, magnetic separation was carried out to remove calcium silicate impurities such as alite and belite in MSS up to five times, thus increasing the Fe content of the MSS. We synthesized the Cu catalyst supported by MSS (donated as Cu@MSS) and characterized the catalyst by various surface analysis techniques, showing the presence of CuO and CuCO3 nanoparticles on the MSS surface. In catalytic reduction tests of para-nitrophenol using sodium borohydride in the presence of Cu@MSS, the reaction was accelerated when using the five-times pre-treated MSS because of the removal of inhibitors such as calcium compounds, as well as the high content of iron oxides leading to a synergetic effect with metallic Cu in this study. In addition, we investigated the effects of various factors, including Cu loading, sodium borohydride concentration, and catalyst dosage, on the catalytic activity of Cu@MSS. The catalyst was found to be stable and reusable. In summary, these results suggest that treated SS can be used as a support material for copper catalysts for the treatment of contaminated wastewater and the easy separation and reuse of the catalyst.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. S. M. Kassim, Macromol. Symp, 320, 43 (2012).

    CAS  Google Scholar 

  2. J. Kim, H. S. Kim and S. Bae, Membr. Water Treat., 10, 1 (2019).

    Google Scholar 

  3. S. Yoon and S. Bae, J. Hazard. Mater., 365, 751 (2019).

    CAS  PubMed  Google Scholar 

  4. H. Alanyali, M. Çöl, M. Yilmaz and Ş. Karagöz, Waste Manag., 26, 1133 (2006).

    CAS  PubMed  Google Scholar 

  5. P. E. Tsakiridis, G. D. Papadimitriou, S. Tsivilis and C. Koroneos, J. Hazard. Mater., 152, 805 (2008).

    CAS  PubMed  Google Scholar 

  6. S. Hamid, S. Bae and W. Lee, Chem. Eng. J., 348, 877 (2018).

    CAS  Google Scholar 

  7. L. V. Fisher and A. R. Barron, Resour. Conserv. Recycl., 146, 244 (2019).

    Google Scholar 

  8. T. Zhang, Q. Yu, J. Wei, J. Li and P. Zhang, Resour. Conserv. Recycl., 56, 48 (2011).

    Google Scholar 

  9. J.-Y. Lee, J.-S. Choi, T.-F. Yuan, Y.-S. Yoon and D. Mitchell, Materials (Basel), 12, 1371 (2019).

    CAS  Google Scholar 

  10. W. J. J. Huijgen, G. J. Witkamp and R. N. J. Comans, Environ. Sci. Technol., 39, 9676 (2005).

    CAS  PubMed  Google Scholar 

  11. X. Wang and Q. S. Cai, Pedosphere, 16, 519 (2006).

    CAS  Google Scholar 

  12. H. Y. Poh, G. S. Ghataora and N. Ghazireh, J. Mater. Civ. Eng., 18, 229 (2006).

    CAS  Google Scholar 

  13. E. Repo, J. K. Warchoł, L. J. Westholm and M. Sillanpää, J. Ind. Eng. Chem, 27, 115 (2015).

    CAS  Google Scholar 

  14. Y J. Zhang, L. C. Liu, Y. Xu, Y. C. Wang and D. L. Xu, J. Hazard. Mater., 209–210, 146 (2012).

    PubMed  Google Scholar 

  15. M. Cheng, G. Zeng, D. Huang, C. Lai, Y. Liu, P. Xu, C. Zhang, J. Wan, L. Hu, W. Xiong and C. Zhou, Chem. Eng. J., 327, 686 (2017).

    CAS  Google Scholar 

  16. K. Horii, T. Kato, K. Sugahara, N. Tsutsumi and Y. Kitano, Nippon Steel Sumitomo Met. Tech. Rep., 109 (2015).

  17. J. Zhao, D. Wang, P. Yan and W. Li, Appl. Sci., 6, 237 (2016).

    Google Scholar 

  18. J. Park and S. Bae, Chemosphere, 202, 733 (2018).

    CAS  PubMed  Google Scholar 

  19. M. Kim and S. Bae, Chemosphere, 212, 1020 (2018).

    CAS  PubMed  Google Scholar 

  20. J. Park and S. Bae, J. Hazard. Mater., 371, 72 (2019).

    CAS  PubMed  Google Scholar 

  21. Y. S. Chan, M. K. Chan, S. K. Ngien, S. Y. Chew and Y. K. Teng, Membr. Water Treat., 9, 1 (2018).

    Google Scholar 

  22. S. Khosroyar and A. Arastehnodeh, Membr. Water Treat., 9, 481 (2018).

    Google Scholar 

  23. X. Du, J. He, J. Zhu, L. Sun and S. An, Appl. Surf. Sci., 258, 2717 (2012).

    CAS  Google Scholar 

  24. J. Jung, S. Bae and W. Lee, Appl. Catal. B Environ., 127, 148 (2012).

    CAS  Google Scholar 

  25. J. Park and S. Bae, Presented at the 2nd international conference on Bioresources, Energy, Environment, and Materials Technology (BEEM 2018), Hongcheon, Korea, June 10–13, 2018.

  26. T. R. Mandlimath and B. Gopal, J. Mol. Catal. A Chem, 350, 9 (2011).

    CAS  Google Scholar 

  27. S. Bae, S. Gim, H. Kim and K. Hanna, Appl. Catal. B Environ., 182, 541 (2016).

    CAS  Google Scholar 

  28. J. Kim and S. Bae, Environ. Eng. Res., 24, 646 (2019).

    Google Scholar 

  29. Z. Xi, Z. Jingdong, W. Shengzhe and L. Fei, Open Chem., 16, 583 (2018).

    Google Scholar 

  30. X. Lin, X. Lv, L. Wang, F. Zhang and L. Duan, Mater. Res. Bull., 48, 2511 (2013).

    CAS  Google Scholar 

  31. S. Pu and M. Liu, J. Alloys Compd., 481, 851 (2009).

    CAS  Google Scholar 

  32. S. Jung, S. Bae and W. Lee, Environ. Sci. Technol., 48, 9651 (2014).

    CAS  PubMed  Google Scholar 

  33. L. Feng, R. Wang, Y. Zhang, S. Ji, Y. Chuan, W. Zhang, B. Liu, C. Yuan and C Du, J. Mater. Sci., 54, 1520 (2019).

    CAS  Google Scholar 

  34. H. Hadj Mokhtar, B. Boukoussa, R. Hamacha, A. Bengueddach and D. El Abed, RSC Adv., 5, 93438 (2015).

    CAS  Google Scholar 

  35. W. Luo, R. Jin, Y. Qin, F. Huang and C. Wang, Appl. Phys. Res, 2, 156 (2010).

    CAS  Google Scholar 

  36. M. Chen, H. Zhu, X. Li, J. Yu, H. Cai, X. Quan, K. Wang and J. Zhang, J. Nanomater., 2014, 1 (2014).

    Google Scholar 

  37. Z. Baolin, G. Qi, H. Xueliang, W. Shurong, Z. Shoumin, W. Shihua and H. Weiping, J. Mol. Catal. A Chem., 249, 211 (2006).

    Google Scholar 

  38. Q. Feng, W. Zhao and S. Wen, J. Alloys Compd., 744, 301 (2018).

    CAS  Google Scholar 

  39. S. Pandey and S. B. Mishra, Carbohydr. Polym., 113, 525 (2014).

    CAS  PubMed  Google Scholar 

  40. A. Bhattacharjee and M. Ahmaruzzaman, RSC Adv., 6, 41348 (2016).

    CAS  Google Scholar 

  41. S. Gu, Y. Lu, J. Kaiser, M. Albrecht and M. Ballauff, Phys. Chem. Chem. Phys., 17, 28137 (2015).

    CAS  PubMed  Google Scholar 

  42. S. Arora, P. Kapoor and M. L. Singla, React. Kinet. Mech. Catal., 99, 157 (2010).

    CAS  Google Scholar 

  43. S. Wunder, F. Polzer, Y. Lu, Y. Mei and M. Ballauff, J. Phys. Chem. C., 114, 8814 (2010).

    CAS  Google Scholar 

  44. P. Zhang, Y. Sui, G. Xiao, Y. Wang, C. Wang, B. Liu, G. Zou and B. Zou, J. Mater. Chem. A., 1, 1632 (2013).

    CAS  Google Scholar 

  45. M. Li, Y. Su, J. Hu, H. Geng, H. Wei, Z. Yang and Y. Zhang, Mater. Res. Bull., 83, 329 (2016).

    CAS  Google Scholar 

  46. S. Ghosh, R. Das, I.H. Chowdhury, P. Bhanja and M.K. Naskar, RSC Adv., 5, 101519 (2015).

    CAS  Google Scholar 

  47. S. Bae, S. Gim, H. Kim, V. Dorcet, M. Pasturel, J.M. Grenèche, G. K. Darbha and K. Hanna, J. Phys. Chem. C., 121, 25195 (2017).

    CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge the support of the National Research Foundation of Korea (project nos. NRF-2019R1C1C1003316) and the Korea Institute of Energy Technology Evaluation and Planning (KETEP) and the Ministry of Trade, Industry and Energy (MOTIE, 20174010201490).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sungjun Bae.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yoon, S., Bae, S. Development of magnetically separable Cu catalyst supported by pre-treated steel slag. Korean J. Chem. Eng. 36, 1814–1825 (2019). https://doi.org/10.1007/s11814-019-0367-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-019-0367-y

Keywords

Navigation