Skip to main content
Log in

Enhancing membrane wetting resistance through superhydrophobic modification by polydimethylsilane-grafted-SiO2 nanoparticles

  • Rapid Communication
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

Membrane gas-liquid separation technology has been widely employed in membrane filtration, distillation, and gas absorption, attributed to its high mass transfer efficiency However, hydrophobic membranes may suffer from pore wetting at low operational pressure difference, leading to the deterioration of removal flux. Hence, anti-wetting strategy via membrane surface modification to improve its intrinsic hydrophobicity needs to be investigated. In this work, modified superhydrophobic polyvinylidene fluoride-co-hexafluoropropylene (PVDF-HFP) membrane was synthesized via non-solvent induced phase separation. Polydimethylsilane-grafted-silica (PGS) nanoparticles with non-polar Si-O-Si bonds were used as surface modifier in coagulation bath to enhance membrane surface hydrophobicity. Results demonstrated that the addition of nanoparticles improved the surface roughness via formation of hierarchical structure. Additionally, the deposition of nanoparticles on polymer spherulites significantly reduced the surface free energy. As a result, modified membranes achieved superhydrophobicity with water contact angle exceeding 150°. The stability tests also showed that the deposition layer of modified membrane was mechanically and thermally robust. This super-hydrophobic modification by PGS nanoparticles is an advanced and facile approach to alleviate membrane wetting.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. S. Mosadegh-Sedghi, D. Rodrigue, J. Brisson and M. C. Iliuta, J. Membr. Sci., 452, 332 (2014).

    Article  CAS  Google Scholar 

  2. J. K. J. Yong, The Development of Thin Films for Efficient Carbon Capture and Storage, M.S. thesis, University of Melbourne Victoria (2016).

  3. H. Nurul Faiqotul and I. G. Wenten, J. Phys: Conf. Ser., 877, 10 (2017).

    Google Scholar 

  4. M. H. Ibrahim, M. H. El-Naas, Z. Zhang and B. Van der Bruggen, Energy Fuels, 32, 963 (2018).

    Article  CAS  Google Scholar 

  5. J. Jeevahan, M. Chandrasekaran, G. B. Joseph, R. Durairaj and G. Mageshwaran, J. Coat. Technol. Res., 15, 231 (2018).

    Article  CAS  Google Scholar 

  6. X. Wu, B. Zhao, L. Wang Z. Zhang, J. Li and X. He, Sep. Purif. Technol., 190, 108 (2018).

    Article  CAS  Google Scholar 

  7. A. Ghaee, A. Ghadimi, B. Sadatnia, A. F. Ismail, Z. Mansourpour and M. Khosravi, Chem. Eng. Res. Des., 120, 47 (2017).

    Article  CAS  Google Scholar 

  8. G. Y. E. Tan, P. C. Oh, K. K. Lau and S. C. Low, Chin. J. Polym. Sci., 37, 654 (2019).

    Article  CAS  Google Scholar 

  9. V. Fernández and M. Khayet, Frontiers in Plant Sci., 6, 510 (2015).

    Article  Google Scholar 

  10. I. Malavasi, I. Bernagozzi, C. Antonini and M. Marengo, Surf. Innovations, 3, 49 (2014).

    Article  Google Scholar 

  11. Y. Liu, T. Xiao, C. Bao, Y Fu and X. Yang, J. Membr. Sci., 563, 298 (2018).

    Article  CAS  Google Scholar 

  12. S. Munirasu, F. Banat, A. A. Durrani and M. A. Haija, Desalination, 417, 77 (2017).

    Article  CAS  Google Scholar 

  13. B. Dong, L. Yang, Q. Yuan, Y. Liu, J. Zhang and G. Fang, Construction and Building. Mater., 110, 163 (2016).

    Article  CAS  Google Scholar 

  14. C. Boo, J. Lee and M. Elimelech, Environ. Sci. Technol., 50, 8112 (2016).

    Article  CAS  Google Scholar 

  15. G. B. Darband, M. Aliofkhazraei, S. Khorsand, S. Sokhanvar and A. Kaboli, Arabian. J. Chem. (2018), doi:https://doi.org/10.1016/j.arabjc.2018.01.013.

    Article  Google Scholar 

  16. K. Y Eum, I. Phiri, J. W. Kim, W. San Choi, J. M. Ko and H. Jung, Korean J. Chem. Eng., 36, 1313 (2019).

    Article  CAS  Google Scholar 

  17. H. Zhou, R. Shi and W. Jin, Sep. Purif. Technol., 127, 61 (2014).

    Article  CAS  Google Scholar 

Download references

Acknowledgement

This research work was supported by Universiti Teknologi PETRONAS under YUTP-FRG grant no. 0153AA-E08 and FRGS grant no 015MA0-003.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pei Ching Oh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Toh, M.J., Oh, P.C., Ahmad, A.L. et al. Enhancing membrane wetting resistance through superhydrophobic modification by polydimethylsilane-grafted-SiO2 nanoparticles. Korean J. Chem. Eng. 36, 1854–1858 (2019). https://doi.org/10.1007/s11814-019-0362-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-019-0362-3

Keywords

Navigation