Skip to main content
Log in

A novel internal assistance method for enhanced fluidization of nanoparticles

  • Fluidization
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

Hydrophilic (polar-P) and hydrophobic (apolar-A) SiO2 nanoparticles were used as assistant materials to improve the fluidizability of Al2O3 and TiO2 nanopowders, which are hard to fluidize normally. To decrease the strong electrostatic forces, binary mixtures prepared with SiO2(P) were fluidized in the presence of suitable alcohol vapors. Results showed that the amount of SiO2 nanoparticles, varying from 5 to 50 wt%, mostly had a beneficial effect on the fluidization quality of the binary mixtures in both cases. TiO2 and Al2O3 nanoparticles combined with 20 wt% SiO2(A) showed almost equal performance in terms of fluidization with the mixtures containing only 5 wt% SiO2(P). This behavior can be addressed by better material homogeneity of latter mixtures which led to a homogeneous, smooth and stable behavior with desirable bed expansion. By comparing the results obtained in this work with those available in the literature, it is proposed that physical mixing with SiO2(P) NPs to improve the flowability of Al2O3 and TiO2 hard-to-fluidize nanoparticles, may be comparatively more efficient than even some of the external methods such as acoustic field or mechanical vibration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Aghabararnejad, N. Mostoufi, R. Sotudeh-Gharebagh and R. Zarghami, In d. Eng. Chem. Res., 50, 4245 (2011).

    Article  CAS  Google Scholar 

  2. S. Matsuda, H. Hatano, T. Muramoto and A. Tsutsumi, AIChE J., 50, 2763 (2004).

    Article  CAS  Google Scholar 

  3. W. Ya o, G. Guangsheng, W. Fei and W. Ju n, Powder Technol., 124, 152 (2002).

    Article  Google Scholar 

  4. Q. Yu, R. N. Dave, C. Zhu, J. A. Quevedo and R. Pfeffer, AIChE J., 51, 1971 (2005).

    Article  CAS  Google Scholar 

  5. C. H. Nam, R. Pfeffer, R. N. Dave and S. Sundaresan, AIChE J., 50, 1776 (2004).

    Article  CAS  Google Scholar 

  6. J. Yang, T. Zhou and L. Song, Adv. Powder Technol., 20, 158 (2009).

    Article  CAS  Google Scholar 

  7. J. V. Scicolone, D. Lepek, L. Louie and R. N. Davé, J. Nanopart. Res., 15, 1434 (2013).

    Article  CAS  Google Scholar 

  8. P. Zeng, T. Zhou and J. Yang, Chem. Eng. Processing: Process Intensification, 47, 101 (2008).

    Article  CAS  Google Scholar 

  9. C. Zhu, G. Liu, Q. Yu, R. Pfeffer, R. N. Dave and C. H. Nam, Powder Technol., 141, 119 (2004).

    Article  CAS  Google Scholar 

  10. S. Kaliyaperumal, S. Barghi, J. Zhu, L. Briens and S. Rohani, Powder Technol., 210, 143 (2011).

    Article  CAS  Google Scholar 

  11. S. S. Ali and M. Asif, Powder Technol., 225, 86 (2012).

    Article  CAS  Google Scholar 

  12. H. Khosravi Bizhaem and H. Basirat Tabrizi, Powder Technol., 237, 14 (2013).

    Article  CAS  Google Scholar 

  13. H. Nakamura and S. Watano, Powder Technol., 183, 324 (2008).

    Article  CAS  Google Scholar 

  14. M. Kashyap, D. Gidaspow and M. Driscoll, Powder Technol., 183, 441 (2008).

    Article  CAS  Google Scholar 

  15. J. M. Valverde, M. A. Quintanilla, M. J. Espin and A. Castellanos, Phys. Rev. E Stat. Nonlin. Soft. Matter. Phys., 77, 031301 (2008).

    Article  CAS  PubMed  Google Scholar 

  16. J. A. Quevedo, A. Omosebi and R. Pfeffer, AIChE J., 56, 1456 (2010).

    Article  CAS  Google Scholar 

  17. J. Wang, B. Xu, T. Zhou and X. Liang, Chem. Eng. Technol., 39, 1490 (2016).

    Article  CAS  Google Scholar 

  18. L. Song, T. Zhou and J. Yang, Adv. Powder Technol., 20, 366 (2009).

    Article  CAS  Google Scholar 

  19. H. Duan, X. Liang, T. Zhou, J. Wang and W. Tang, Powder Technol., 267, 315 (2014).

    Article  CAS  Google Scholar 

  20. Y. Chen, J. Yang, R. N. Dave and R. Pfeffer, AIChE J., 54, 104 (2008).

    Article  CAS  Google Scholar 

  21. J. Yang, A. Sliva, A. Banerjee, R. N. Dave and R. Pfeffer, Powder Technol., 158, 21 (2005).

    Article  CAS  Google Scholar 

  22. X. Liang, H. Du an, T. Zhou and J. Kong, Adv. Powder Technol., 25, 236 (2014).

    Article  CAS  Google Scholar 

  23. X. Liang, Y. Zhou, L. Zou, J. Kong, J. Wang and T. Zhou, Powder Technol., 304, 101 (2016).

    Article  CAS  Google Scholar 

  24. J. M. Valverde, F. Pontiga, C. Soria-Hoyo, M. A. Quintanilla, H. Moreno, F. J. Duran and M. J. Espin, Phys. Chem. Chem. Phys., 13, 14906 (2011).

    Article  CAS  PubMed  Google Scholar 

  25. M. A. S. Quintanilla and J. M. Valverde, Particuology, 11, 448 (2013).

    Article  CAS  Google Scholar 

  26. B. Azimi, M. Tahmasebpoor, P. E. Sanchez-Jimenez, A. Perejon and J. M. Valverde, Chem. Eng. J., 358, 679 (2018).

    Article  CAS  Google Scholar 

  27. O. Amjadi, M. Tahmasebpoor and H. Aghdasinia, Chem. Eng. Technol., 42, 287 (2019).

    Article  CAS  Google Scholar 

  28. F. Pontiga, J. Valverde, H. Moreno and F. Duran-Olivencia, Chem. Eng. J., 222, 546 (2013).

    Article  CAS  Google Scholar 

  29. M. Tahmasebpoor, L. de Martín, M. Talebi, N. Mostoufi and J. R. van Ommen, PCCP, 15, 5788 (2013).

    Article  CAS  PubMed  Google Scholar 

  30. M. Tahmasebpoor, R. Ghasemi Seif Abadi, Y. Rahimvandi Noupoor and P. Badamchizadeh, In d. Eng. Chem. Res., 55, 12939 (2016).

    Article  CAS  Google Scholar 

  31. R. Pfeffer and J. A. Quevedo, US Patent, 7,905,433 (2011).

    Google Scholar 

  32. P. Larkin, Infrared and Raman spectroscopy; principles and spectral interpretation, Elsevier (2011).

    Google Scholar 

  33. J. Chaouki, C. Chavarie, D. Klvana and G. Pajonk, Powder Tech-nol., 43, 117 (1985).

    Article  CAS  Google Scholar 

  34. J. M. Valverde and A. Castellanos, Powder Technol., 181, 347 (2008).

    Article  CAS  Google Scholar 

  35. L. de Martín and J. R. van Ommen, J. Nanopart. Res., 15, 1 (2013).

    Article  CAS  Google Scholar 

  36. C. Zhu, Q. Yu, R. N. Dave and R. Pfeffer, AIChE J., 51, 426 (2005).

    Article  CAS  Google Scholar 

  37. E. W. van der Vegte and G. Hadziioannou, Langmuir, 13, 4357 (1997).

    Article  Google Scholar 

  38. P. Ammendola, R. Chirone and F. Raganati, Adv. Powder Technol., 22, 174 (2011).

    Article  CAS  Google Scholar 

  39. H. Duan, J. Wang and T. Zhou, Procedia Eng., 102, 815 (2015).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maryam Tahmasebpoor.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rahimvandi Noupoor, Y., Tahmasebpoor, M. A novel internal assistance method for enhanced fluidization of nanoparticles. Korean J. Chem. Eng. 36, 1377–1387 (2019). https://doi.org/10.1007/s11814-019-0318-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-019-0318-7

Keywords

Navigation