Skip to main content
Log in

In-situ hydrodeoxygenation of furfural to furans over supported Ni catalysts in aqueous solution

  • Catalysis, Reaction Engineering
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

In-situ hydrodeoxygenation of furfural as a representative component in bio-oil was investigated in aqueous solution over supported Ni catalysts, for preparing furans as an antiknock additive. The addition of methanol, ethanol, or isopropanol was found inhibitive to coke formation at 220 °C. When using methanol as the hydrogen donor and coke inhibitor, the support in mesoporous structure with moderate acidity was more favorable to the conversion of furfural and to the formation of furans. An increased loading amount of Ni facilitated the generation of deep hydrogenated products. The conversion of furfural could hardly be changed under different methanol to water ratios, while the product distribution varied remarkably. Under optimized conditions, the summary yield of furan and 2-methylfuran reached to above 85%. On the basis of optimized reaction conditions, the in-situ hydrodeoxygenation of an eight-component synthetic bio-oil was tested, and the results verified the adaptability of the method for conversion of bio-oil.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. W. Huber, S. Iborra and A. Corma, Chem. Rev., 106, 4044 (2006).

    Article  CAS  PubMed  Google Scholar 

  2. S. N. Naik, V. V. Goud, P. K. Routand A. K. Dalai, Renew. Sust. Energy Rev., 14, 578 (2010).

    Article  CAS  Google Scholar 

  3. P. S. Nigam and A. Singh, Prog. Energy Combust., 37, 52 (2011).

    Article  CAS  Google Scholar 

  4. J. C. Serrano-Ruiz and J. A. Dumesic, Energ y Environ. Sci., 4, 83 (2011).

    Article  CAS  Google Scholar 

  5. J. S. Kim, Bioresour. Technol., 178, 90 (2015).

    Article  CAS  PubMed  Google Scholar 

  6. T.-S. Kim, S. Oh, J.-Y. Kim, I.-G. Choi and J. W. Choi, Energy, 68, 437 (2014).

    Article  CAS  Google Scholar 

  7. H. Wang, J. Male and Y. Wang, ACS Catal., 3, 1047 (2013).

    Article  CAS  Google Scholar 

  8. Z. Yang, A. Kumar and R. L. Huhnke, Renew. Sust. Energy Rev., 50, 859 (2015).

    Article  CAS  Google Scholar 

  9. Q. Bu, H. Lei, A. H. Zacher, L. Wang, S. Ren, J. Liang, Y. Wei, Y. Liu, J. Tang, Q. Zhang and R. Ruan, Bioresour. Technol., 124, 470 (2012).

    Article  CAS  PubMed  Google Scholar 

  10. K. Yan, G. Wu, T. Lafleur and C. Jarvis, Renew. Sust. Energy Rev., 38, 663 (2014).

    Article  CAS  Google Scholar 

  11. D. C. Elliott, Energy Fuels, 21, 1792 (2007).

    Article  CAS  Google Scholar 

  12. Y. Zeng, Z. Wang, W. Lin, W. Song, J. M. Christensen and A. D. Jensen, Catal. Commun., 82, 46 (2016).

    Article  CAS  Google Scholar 

  13. Y. Xu, J. Long, Q. Liu, Y. Li, C. Wang, Q. Zhang, W. Lv, X. Zhang, S. Qiu, T. Wang and L. Ma, Energy Convers. Manage., 89, 188 (2015).

    Article  CAS  Google Scholar 

  14. C. A. Fisk, T. Morgan, Y. Ji, M. Crocker, C. Crofcheck and S. A. Lewis, Appl. Catal. A-Gen., 358, 150 (2009).

    Article  CAS  Google Scholar 

  15. Y. Zeng, Z. Wang, W. Lin and W. Song, Chem. Eng. J., 320, 55 (2017).

    Article  CAS  Google Scholar 

  16. Z. Tang, Q. Lv, Y. Zhang, X. F. Zhu and Q. X. Guo, Ind. Eng. Chem. Res., 48, 6923 (2009).

    Article  CAS  Google Scholar 

  17. S. Bhogeswararao and D. Srinivas, J. Catal., 327, 65 (2015).

    Article  CAS  Google Scholar 

  18. V. V. Pushkarev, N. Musselwhite, K. An, S. Alayoglu and G. A. Somorjai, Nano Lett., 12, 5196 (2012).

    Article  CAS  PubMed  Google Scholar 

  19. A. Bohre, S. Dutta, B. Saha and M. M. Abu-Omar, ACS Sustain. Chem. Eng., 3, 1263 (2015).

    Article  CAS  Google Scholar 

  20. S. Sitthisa and D. E. Resasco, Catal. Lett., 141, 784 (2011).

    Article  CAS  Google Scholar 

  21. X. Zhang, T. Wang, L. Ma, Q. Zhang and T. Jiang, Bioresour. Techol., 127, 306 (2013).

    Article  CAS  Google Scholar 

  22. P. M. Mortensen, J.-D. Grunwaldt, P. A. Jensen and A. D. Jensen, ACS Catal., 3, 1774 (2013).

    Article  CAS  Google Scholar 

  23. P.M. Mortensen, J. D. Grunwaldt, P. A. Jensen, K. G. Knudsen and A. D. Jensen, Appl. Catal. A-Gen., 407, 1 (2011).

    Article  CAS  Google Scholar 

  24. T. Stedile, L. Ender, H. F. Meier, E. L. Simionatto and V. R. Wig-gers, Renew. Sust. Energy Rev., 50, 92 (2015).

    Article  CAS  Google Scholar 

  25. K.-K. Cheng, J.-A. Zhang, H.-Z. Ling, W.-X. Ping, W. Huang, J.-P. Ge and J.-M. Xu, Biochem. Eng. J., 43, 203 (2009).

    Article  CAS  Google Scholar 

  26. X. Li, R. Gunawan, Y. Wang, W. Chaiwat, X. Hu, M. Gholizadeh, J. Bromly and C.-Z. Li, Fuel, 116, 642 (2014).

    Article  CAS  Google Scholar 

  27. W.-M. Xiong, Y. Fu, F.-X. Zeng and Q.-X. Guo, Fuel Process. Technol., 92, 1599 (2011).

    Article  CAS  Google Scholar 

  28. Y. Li, C. Zhang, Y. Liu, X. Hou, R. Zhang and X. Tang, Energy Fuels, 29, 1722 (2015).

    Article  CAS  Google Scholar 

  29. F. S. Asghari and H. Yoshida, Ind. Eng. Chem. Res., 45, 2163 (2006).

    Article  CAS  Google Scholar 

  30. J. Shabaker, J. Catal., 215, 344 (2003).

    Article  CAS  Google Scholar 

  31. Y. Nakagawa, H. Nakazawa, H. Watanabe and K. Tomishige, Chem-CatChem, 4, 1791 (2012).

    CAS  Google Scholar 

  32. S. Zhang, L. Dong, B. Xue, J. Chen, N. Guan and F. Zhang, React. Kinet. Catal. Lett., 89, 1 (2006).

    Google Scholar 

  33. C. Siriruang, S. Charojrochkul and P. Toochinda, Monatsh. Chem., 147, 1143 (2016).

    Article  CAS  Google Scholar 

  34. T. Y. Amiri and J. Moghaddas, J. Fuel Chem. Technol., 44, 84 (2016).

    Article  Google Scholar 

  35. Y. Shi, X. Du, L. Yang, Y. Sun and Y. Yang, Int. J. Hydrogen Energy, 38, 13974 (2013).

    Article  CAS  Google Scholar 

  36. F. Vogel, J.L.D. Blanchard, P. A. Marrone, S. F. Rice, P. A. Webley, W. A. Peters, A. K. Smith and J. W. Tester, J. Supercrit. Fluid, 34, 249 (2005).

    Article  CAS  Google Scholar 

  37. N. S. Biradar, A. A. Hengne, S. N. Birajdar, R. Swami and C. V. Rode, Org. Process Res. Dev., 18, 1434 (2014).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (51476180), and the National Key R&D Program of China (2018YFB0605000). Specially, thanks Anker Degn Jensen for discussions and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ze Wang.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Z., Fu, Z., Lin, W. et al. In-situ hydrodeoxygenation of furfural to furans over supported Ni catalysts in aqueous solution. Korean J. Chem. Eng. 36, 1235–1242 (2019). https://doi.org/10.1007/s11814-019-0305-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-019-0305-z

Keywords

Navigation