Skip to main content
Log in

Enhanced adsorption of Orange II on bagasse-derived biochar by direct addition of CTAB

  • Environmental Engineering
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

Surface charge properties of an adsorbent always play an important role for the removal of contaminants from water. A cationic surfactant hexadecyl tri-methyl ammonium bromide (CTAB) was involved into adsorptive removal of Orange II (ORII) by bagasse biochars to realize an in-situ modification and an enhanced adsorption capability. Adsorption capacity of biochar (BC600) improved significantly from 1.66 mg/g in the absence of CTAB to 4.42 mg/g in the presence of 2.0 mg/L CTAB. A more hydrophobic surface of bagasse biochar was favorable for the dye uptake in the presence of CTAB. Linear pseudo-second-order kinetic model fitted the kinetics data better at three pH conditions than pseudo-first-order kinetic model, whether in the presence and absence of CTAB. Both nonlinear pseudo-first-order and pseudo-second-order kinetic models were suitable to describe the experimental data. The maximal adsorption capacity in the absence of CTAB was very limited (41.4 mg/g), while the adsorption isotherm curve in the presence of CTAB was almost linear, indicating a strong adsorption capability due to the introduction of CTAB. Direct addition of CTAB into wastewater is a potential technique for the enhanced removal of negatively-charged pollutants by bagasse biochar.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. S. Rai, M. S. Bhattacharyya, J. Singh, T. K. Bansal and P. Vats, Crit. Rev. Env. Sci. Technol., 35(3), 219 (2007).

    Article  CAS  Google Scholar 

  2. A. K. Verma, R. R. Dash and P. Bhunia, J. Environ. Manage., 93(1), 154 (2012).

    Article  CAS  PubMed  Google Scholar 

  3. E. Alventosa-deLara, S. Barredo-Damas, M. I. Alcaina-Miranda and M. I. Iborra-Clar, J. Hazard. Mater., 209–210, 492 (2012).

    Article  CAS  PubMed  Google Scholar 

  4. C. Comninellis, A. Kapalka, S. Malato, S. A. Parsons, I. Poulios and D. Mantzavinos, J. Chem. Technol. Biol., 83(6), 769 (2008).

    CAS  Google Scholar 

  5. L. Markovska, V. Meshko and V. Noveski, Korean J. Chem. Eng., 18(2), 190 (2001).

    Article  CAS  Google Scholar 

  6. J. H. Qu, J. Environ. Sci., 20, 1 (2008).

    Article  CAS  Google Scholar 

  7. I. Ali, M. Asim and T. A. Khan, J. Environ. Manage., 113, 170 (2012).

    Article  CAS  PubMed  Google Scholar 

  8. A. Demirbas, J. Hazard. Mater., 157(2–3), 220 (2008).

    Article  CAS  PubMed  Google Scholar 

  9. A. Dąbrowski, P. Podkościelny, Z. Hubicki and M. Barczak, Che-mosphere, 58(8), 1049 (2005).

    Article  CAS  Google Scholar 

  10. M. Auta and B. H. Hameed, Chem. Eng. J., 237, 352 (2014).

    Article  CAS  Google Scholar 

  11. D. Mohan, A. Sarswat, Y. S. Ok and C. U. Pittman Jr., Bioresour. Technol., 160, 191 (2014).

    Article  CAS  PubMed  Google Scholar 

  12. M. Ahmad, A. U. Rajapaksha, J. E. Lim, M. Zhang, N. Bolan, D. Mohan, M. Vithanage, S. S. Lee and Y. S. Ok, Chemosphere, 99, 19 (2014).

    Article  CAS  PubMed  Google Scholar 

  13. J. Lehmann, Nature, 447, 143 (2007).

    Article  CAS  PubMed  Google Scholar 

  14. C. J. Atkinson, J. D. Fitzgerald and N. A. Hipps, Plant Soil, 337, 1 (2010).

    Article  CAS  Google Scholar 

  15. H. N. Tran, S. J. You and H. P. Chao, Korean J. Chem. Eng., 34, 1708 (2017).

    Article  CAS  Google Scholar 

  16. B. L. Chen and Z. M. Chen, Chemosphere, 76, 127 (2009).

    Article  CAS  PubMed  Google Scholar 

  17. A. A. Abdelhafez and J. H. Li, J. Taiwan Inst. Chem. E., 61, 367 (2016).

    Article  CAS  Google Scholar 

  18. J. W. Lee, B. Hawkins, D. M. Day and D. C. Reicosky, Energy Environ. Sci., 3, 1695 (2010).

    Article  CAS  Google Scholar 

  19. M. X. Xie, W. Chen, Z. Y. Xu, S. R. Zheng and D. Q. Zhu, Environ. Pollut., 186, 187 (2014).

    Article  CAS  PubMed  Google Scholar 

  20. M.D. Inyang, B. Gao, Y. Yao, Y. W. Xue, R. Z. Andrew, P. Pratap and X. D. Cao, Bioresour. Technol., 110, 50 (2012).

    Article  CAS  PubMed  Google Scholar 

  21. Y. M. Zhou, B. Gao, R. Z. Andrew, H. Chen, M. Zhang and X. D. Cao, Bioresour. Technol., 152, 538 (2014).

    Article  CAS  PubMed  Google Scholar 

  22. X. L. Hao, H. Liu, G. S. Zhang, H. Zou, Y. B. Zhang, M. M. Zhou and Y. C. Gu, Appl. Clay Sci., 55, 177 (2012).

    Article  CAS  Google Scholar 

  23. G. T. Li, W. Y. Zhu, C. Y. Zhang, S. Zhang, L. L. Liu, L. F. Zhu and W. G. Zhao, Bioresour. Technol., 206, 16 (2016).

    Article  CAS  PubMed  Google Scholar 

  24. R. D. Zhang, J. H. Zhang, X. N. Zhang, C. C. Dou and R. P. Han, J. Taiwan Inst. Chem. E, 45, 2578 (2014).

    Article  CAS  Google Scholar 

  25. B. L. Zhao, Y. Shang, W. Xiao, C. C. Dou and R. P. Han, J. Environ. Chem. Eng., 2, 40 (2014).

    Article  CAS  Google Scholar 

  26. J. Z. Guo, S. W. Chen, L. Liu, B. Li, P. Yang, L. J. Zhang and Y. L. Feng, J. Colloid Interface Sci., 382, 61 (2012).

    Article  CAS  PubMed  Google Scholar 

  27. F. Papari, S. Sahebi, E. Kouhgardi, R. Behresi, G. Asgari, S. Jorfi and B. Ramavandi, Desalin. Water Treat., 97, 285 (2017).

    Article  CAS  Google Scholar 

  28. S. Chatterjee, D. S. Lee, M. W. Lee and S. H. Woo, Bioresour. Technol., 100, 2803 (2009).

    Article  CAS  PubMed  Google Scholar 

  29. B. Ramavandi, S. Farjadfard and M. Ardjmand, J. Environ. Chem. Eng., 2, 1776 (2014).

    Article  CAS  Google Scholar 

  30. G. T. Li, W. Y. Zhu, L. F. Zhu and X. Q. Chai, Korean J. Chem. Eng., 33, 2215 (2016).

    Article  CAS  Google Scholar 

  31. S. Lagergren, Kungliga Svenska Vetenskapsakademiens. Handlinga, 24, 1 (1898).

    Google Scholar 

  32. Y. S. Ho and G. McKay, Process Biochem., 34, 451 (1999).

    Article  CAS  Google Scholar 

  33. B. Ramavandi and G. Asgari, Process Saf. Environ., 116, 61 (2018).

    Article  CAS  Google Scholar 

  34. M. Fooladvand and B. Ramavandi, Indian J. Chem. Technol., 22(5), 183 (2015).

    Google Scholar 

  35. M. Teixidó, J. J. Pignatello, J. L. Beltrán, M. Granados and J. Peccia, Environ. Sci. Technol., 45, 10020 (2011).

    Article  CAS  PubMed  Google Scholar 

  36. H. Zheng, Z. Y. Wang, J. Zhao, H. Stephen and B. S. Xing, Environ. Pollut., 181, 60 (2013).

    Article  CAS  PubMed  Google Scholar 

  37. X. R. Jing, Y. Y. Wang, W. J. Liu, Y. K. Wang and H. Jiang, Chem. Eng. J., 248, 168 (2014).

    Article  CAS  Google Scholar 

  38. I. Langmuir, J. Am. Chem. Soc., 38, 2221 (1916).

    Article  CAS  Google Scholar 

  39. H. M. F. Freundlich, J. Phys. Chem., 57, 385 (1906).

    CAS  Google Scholar 

  40. G. Asgari, B. Ramavandi, L. Rasuli and M. Ahmadi, Desalin. Water Treat., 51, 6009 (2013).

    Article  CAS  Google Scholar 

  41. C. MaryamShahverdi, E. Kouhgardi and B. Ramavandi, Data Brief, 9, 163 (2016).

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful for the financial support from the National Natural Science Foundation of China (Grant No. 51378205), and the foundation for university key youth teacher by Henan Province of China (2013GGJS-088).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guoting Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, G., Li, H., Mi, X. et al. Enhanced adsorption of Orange II on bagasse-derived biochar by direct addition of CTAB. Korean J. Chem. Eng. 36, 1274–1280 (2019). https://doi.org/10.1007/s11814-019-0304-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-019-0304-0

Keywords

Navigation