Skip to main content
Log in

Biodegradation of tetrachloroethylene by a newly isolated aerobic Sphingopyxis ummariensis VR13

  • Biotechnology
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

Chlorinated aliphatic solvents are major sources of groundwater and soil contamination. In this study, an aerobic bacterial strain, Sphingopyxis ummariensis VR13, which has been newly isolated from petrochemical wastewater sludge, was used for the dechlorination of PCE in relatively high concentrations. The addition of a co-substrate as glucose and yeast extract enhanced the dechlorination of PCE. An adaptation of the bacterial cells to PCE resulted in a significant increase in the PCE degradation yield (62.9–39.4%) at relatively high initial PCE concentrations (0.4–5 mM). The adapted cells achieved the highest biodegradation yield (64.8%) in 1.2mM. However, the maximum dechlorination percentage (41.6%) was measured in lower PCE concentration. The kinetic studies showed that PCE degradation was associated with the biomass growth because a higher removal of PCE (64.8%) occurred in a higher cell density. The degradation kinetics of PCE was properly fitted by Monod-like equation with the specific degradation rate of 7.2mmol PCE (g biomass)−1d−1, which was even faster than the reported anaerobic bacteria at this concentration. This strain can be used in the aerobic degradation of PCE.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W.J. Doucette, J.K. Chard, H. Fabrizius, C. Crouch, M.R. Petersen, T.E. Carlsen, B.K. Chars and K. Gorder, Environ. Sci. Technol., 41, 2505 (2007).

    Article  CAS  PubMed  Google Scholar 

  2. P.A. Janulewicz, R.J. Killiany, R.F. White, B.M. Martin, M.R. Winter, J.M. Weinberg, M. Winter, B. Martin and A. Aschengrau, Neurotoxicol. Teratol., 38, 13 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. L. Ye, L. Fei, C. Honghan, S. Jinhua and W. Yufan, Acta Geolog. Sinica (English Edition), 82, 911 (2008).

    Article  Google Scholar 

  4. A. Tiehm and K.R. Schmidt, Curr. Opin. Biotechnol., 22, 415 (2011).

    Article  CAS  PubMed  Google Scholar 

  5. Y. Dong, E.C. Butler, R.P. Philp and L.R. Krumholz, Biodegradation, 22, 431 (2011).

    Article  CAS  PubMed  Google Scholar 

  6. T. Futagami, M. Goto and K. Furukawa, Chem. Rec., 8, 1 (2008).

    Article  CAS  PubMed  Google Scholar 

  7. R.E. Doherty, Environ. Forensics, 1, 69 (2000).

    Article  CAS  Google Scholar 

  8. M. Miguet, V. Goetz, G. Plantard and Y. Jaeger, Ind. Eng. Chem. Res., 54, 9813 (2015).

    Article  CAS  Google Scholar 

  9. V. Linek, J. Sinkule and V. Janda, Water Res., 32, 1264 (1998).

    Article  CAS  Google Scholar 

  10. A. Gil, A. Elmchaouri, Y. El Mouzdahir and S. Korili, Adsorp. Sci. Technol., 33, 355 (2015).

    Article  CAS  Google Scholar 

  11. J. Grzechulska-Damszel, M. Grześkowiak, J. Przepiórski and A. Morawski, Int. J. Environ. Res., 8, 347 (2014).

    Google Scholar 

  12. F. Zheng, B. Gao, Y. Sun, X. Shi, H. Xu, J. Wu and Y. Gao, Chem. Eng. J., 283, 595 (2016).

    Article  CAS  Google Scholar 

  13. I. Dolinová, M. Štrojsová, M. Černík, J. Němeček, J. Macháčková and A. Ševců, Environ. Sci. Pollut. Res., 24, 13262 (2017).

    Article  CAS  Google Scholar 

  14. M. Yoshikawa, M. Zhang and K. Toyota, Water, Air, Soil Pollut., 228, 25 (2017).

    Article  CAS  Google Scholar 

  15. J. Lee and T.K. Lee, J. Microbiol. Biotechnol., 26, 120 (2016).

    Article  CAS  PubMed  Google Scholar 

  16. T.E. Mattes, A.K. Alexander and N.V. Coleman, FEMS Microbiol. Rev., 34, 445 (2010).

    Article  CAS  PubMed  Google Scholar 

  17. D. Ryoo, H. Shim, K. Canada, P. Barbieri and T. K. Wood, Nature Biotechnol., 18, 775 (2000).

    Article  CAS  Google Scholar 

  18. H. Shim, D. Ryoo, P. Barbieri and T. Wood, Appl. Microbiol. Biotechnol., 56, 265 (2001).

    Article  CAS  PubMed  Google Scholar 

  19. M. Yoshikawa, M. Zhang and K. Toyota, Microb. Environ., 23, 188 (2017).

    Article  Google Scholar 

  20. A. Tabernacka, E. Zborowska, K. Pogoda and M. Żołądek, Environ. Technol., 40(4), 470 (2019).

    Article  CAS  PubMed  Google Scholar 

  21. N.K. Pazarlioğlu and A. Telefoncu, Proc. Biochem., 40, 1807 (2005).

    Article  CAS  Google Scholar 

  22. G. Gonzalez, G. Herrera, M.T. Garcıa and M. Pena, Bioresour. Technol., 80, 137 (2001).

    Article  CAS  PubMed  Google Scholar 

  23. S. Shokrollahzadeh, F. Azizmohseni and F. Golmohamad, Adv. Environ. Sci. Technol., 1, 1 (2015).

    Google Scholar 

  24. M. Sedighi, S. M. Zamir and F. Vahabzadeh, J. Environ. Manage., 165, 53 (2016).

    Article  CAS  PubMed  Google Scholar 

  25. J. Yu, W. Cai, Z. Cheng and J. Chen, J. Environ. Sci., 26, 1108 (2014).

    Article  CAS  Google Scholar 

  26. C. Aranda, F. Godoy, J. Becerra, R. Barra and M. Martinez, Biodegradation, 14, 265 (2003).

    Article  CAS  PubMed  Google Scholar 

  27. S. Gaza, K.R. Schmidt, P. Weigold, M. Heidinger and A. Tiehm, Water Res., 151, 343 (2019).

    Article  CAS  PubMed  Google Scholar 

  28. B.Z. Fathepure and S. A. Boyd, J. Appl. Environ. Microbiol., 54, 2976 (1988).

    CAS  Google Scholar 

  29. H. Shen and G.W. Sewell, Environ. Sci. Technol., 39, 9286 (2005).

    Article  CAS  PubMed  Google Scholar 

  30. Y. Zhang and J.H. Tay, Biochem. Eng. J., 106, 1 (2016).

    Article  CAS  Google Scholar 

  31. Y. Li, B. Li, C.-P. Wang, J.-Z. Fan and H.-W. Sun, Int. J. Mol. Sci., 15, 9134 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. P. Bhatt, M. S. Kumar, S. Mudliar and T. Chakrabarti, Crit. Rev. Environ. Sci. Technol., 37, 165 (2007).

    Article  CAS  Google Scholar 

  33. A.S. Landa, E.M. Sipkema, J. Weijma, A. Beenackers, J. Dolfing and D.B. Janssen, J. Appl. Environ. Microbiol., 60, 3368 (1994).

    CAS  Google Scholar 

  34. H.L. Chang and L. Alvarez-Cohen, Biotechnol. Bioeng., 45, 440 (1995).

    Article  CAS  PubMed  Google Scholar 

  35. S. Fan and K.M. Scow, J. Appl. Environ. Microbiol., 59, 1911 (1993).

    CAS  Google Scholar 

  36. J.A. Humphries, A.M.H. Ashe, J.A. Smiley and C.G. Johnston, Can. J. Microbiol., 51, 433 (2005).

    Article  CAS  PubMed  Google Scholar 

  37. I. Nijenhuis, J. Andert, K. Beck, M. Kästner, G. Diekert and H.-H. Richnow, J. Appl. Environ. Microbiol., 71, 3413 (2005).

    Article  CAS  Google Scholar 

  38. A. Suyama, R. Iwakiri, K. Kai, T. Tokunaga, N. Sera and K. Furukawa, Biosci. Biotechnol. Biochem., 65, 1474 (2001).

    Article  CAS  PubMed  Google Scholar 

  39. Y.-M. Chen, T.-F. Lin, C. Huang and J.-C. Lin, Chemosphere, 72, 1671 (2008).

    Article  CAS  PubMed  Google Scholar 

  40. A.A. DiSpirito, J. Gulledge, A.K. Shiemke, J.C. Murrell, M.E. Lidstrom and C. L. Krema, Biodegradation, 2, 151 (1991).

    Article  CAS  Google Scholar 

  41. S. Lontoh, A.A. DiSpirito and J.D. Semrau, Arch. Microbiol., 171, 301 (1999).

    Article  CAS  Google Scholar 

  42. A.K. Shukla, P. Vishwakarma, S. Upadhyay, A. K. Tripathi, H. Prasana and S.K. Dubey, Bioresour. Technol., 100, 2469 (2009).

    Article  CAS  PubMed  Google Scholar 

  43. A.K. Shukla, P. Vishwakarma, R. Singh, S. Upadhyay and S.K. Dubey, Bioresour. Technol., 101, 2126 (2010).

    Article  CAS  PubMed  Google Scholar 

  44. H. Li, S.Y. Zhang, X.L. Wang, J. Yang, J.D. Gu, R.L. Zhu, P. Wang, K.F. Lin and Y.D. Liu, Environ. Technol., 36, 667 (2015).

    Article  CAS  PubMed  Google Scholar 

  45. J.D. Neufeld, J. Vohra, M.G. Dumont, T. Lueders, M. Manefield, M.W. Friedrich and J.C. Murrell, Nat. Protoc., 2, 860 (2007).

    Article  CAS  PubMed  Google Scholar 

  46. M. Yoshikawa, M. Zhang, F. Kurisu and K. Toyota, Water, Air, Soil Pollut., 228, 418 (2017).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Soheila Shokrollahzadeh or Abbas Farazmand.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Varzaghani, N.B., Shokrollahzadeh, S. & Farazmand, A. Biodegradation of tetrachloroethylene by a newly isolated aerobic Sphingopyxis ummariensis VR13. Korean J. Chem. Eng. 36, 1305–1312 (2019). https://doi.org/10.1007/s11814-019-0303-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-019-0303-1

Keywords

Navigation