Abstract
Colloidal quantum dots are nano semiconductor materials that have been found in many applications, producing multiple exciton generation, unique optical and electronic properties, adjustable in size and bandwidth. Synthesized QDs are expected to exhibit high photoluminescence quantum yield and monodisperse properties according to their application area. Cannula method was adapted together with the organometallic synthesis method for the first time in the literature to increase the photoluminescence quantum yield of organometallic CdTe QD and minimize the full width at half maximum value of the photoluminescence band. Injection of precursors by the Cannula method is much faster than the injecting with the conventional method of using a glass syringe, which limits the size distribution in the solution during synthesis. In addition, the fastest injection method using Cannula method yields the shortest full width half maximum value of 27.20 nm for CdTe QDs in the literature. The photoluminescence quantum yield value of the CdTe QDs synthesized by the classical method was 8.12±2.1%, while the photoluminescence quantum yield of the CdTe QDs synthesized by the Cannula method was increased to 25.66±2.1%.
This is a preview of subscription content, access via your institution.
References
Z. Fang, L. Liu, L. Xu, X. Yin and X. Zhong, Nanotechnology, 19 (2008)
D. Zhou, M. Lin, Z. Chen, H. Sun, H. Zhang, H. Sun and B. Yang, Chem. Mater., 23, 4857 (2011).
A. Shavel, N. Gaponik and A. Eychmüller, J. Phys. Chem. B., 110, 19280 (2006).
S. F. Wuister, I. Swart, F. van Driel, S. G. Hickey and C. de Mello Donegá, Nano Lett., 3, 503 (2003).
Y. Yang, C. Zhang, X. Qu, W. Zhang, M. Marus, B. Xu, K. Wang and X. Wei Sun, IEEE Trans. Nanotechnol., 18, 220 (2019).
Q. Ma and X. Su, Appl. Spectrosc. Rev., 51, 162 (2016).
D. Sharma, R. Jha and S. Kumar, Sol. Energy Mater. Sol. Cells, 155, 294 (2016).
Y. Kim and J. Y. Chang, Sens. Actuators, B Chem., 234, 122 (2016).
O. Mashinchian, M. Johari-Ahar, B. Ghaemi, M. Rashidi, J. Barar and Y. Omidi, BioImpacts, 4, 149 (2014).
Z. A. Peng and X. Peng, J. Am. Chem. Soc., 123, 183 (2001).
J. Wang, Y. Long, Y. Zhang, X. Zhong and L. Zhu, ChemPhysChem., 10, 680 (2009).
Y. Wang and S. Liu, J. Chil. Chem. Soc., 57, 1109 (2012).
J.-J. Shi, S. Wang, T.-T. He, E. S. Abdel-Halim and J.-J. Zhu, Ultrason. Sonochem., 21, 493 (2014).
L. Li, H. Qian and J. Ren, Chem. Commun., 528 (2005).
Y. S. Li, F. L. Jiang, Q. Xiao, R. Li, K. Li, M. F. Zhang, A. Q. Zhang, S. F. Sun and Y. Liu, Appl. Catal. B Environ., 101, 118 (2010).
R. Kniprath, J. P. Rabe, J. T. McLeskey, D. Wang and S. Kirstein, Thin Solid Films, 518, 295 (2009).
G.-Y. Lan, Z. Yang, Y.-W. Lin, Z.-H. Lin, H.-Y. Liao and H.-T. Chang, J. Mater. Chem., 19, 2349 (2009).
R. W. Birkmire and B. E. McCandless, Curr. Opin. Solid State Mater. Sci., 14, 139 (2010).
C. S. Ferekides, U. Balasubramanian, R. Mamazza, V. Viswanathan, H. Zhao and D. L. Morel, Sol. Energy, 77, 823 (2004).
F. L. Xue, J. Y. Chen, J. Guo, C. C. Wang, W. L. Yang, P. N. Wang and D. R. Lu, J. Fluoresc., 17, 149 (2007).
Y. F. Liu and J. S. Yu, J. Colloid Interface Sci., 351, 1 (2010).
B. Jai Kumar and H. M. Mahesh, Superlattices Microstruct., 104, 118 (2017).
J. Lee, H. Chen, K. Koh, C. L. Chang, C. M. Kim and S. H. Kim, Korean J. Chem. Eng., 26, 417 (2009).
K. Ruan, Y. Guo, Y. Tang, Y. Zhang, J. Zhang, M. He, J. Kong and J. Gu, Compos. Commun., 10, 68 (2018).
Y. Huangfu, C. Liang, Y. Han, H. Qiu, P. Song, L. Wang, J. Kong and J. Gu, Compos. Sci. Technol., 169, 70 (2019).
X. Yang, F. Ren, Y. Wang, T. Ding, H. Sun, D. Ma and X. W. Sun, Sci. Rep., 7 (2017).
R. C. Somers, M. G. Bawendi and D. G. Nocera, Chem. Soc. Rev., 36, 579 (2007).
I. Hwang, M. Seol, H. Kim and K. Yong, Appl. Phys. Lett., 103 (2013).
R. C. Page, D. Espinobarro-Velazquez, M. A. Leontiadou, C. Smith, E. A. Lewis, S. J. Haigh, C. Li, H. Radtke, A. Pengpad, F. Bondino, E. Magnano, I. Pis, W. R. Flavell, P. O’Brien and D. J. Binks, Small, 11, 1548 (2015).
C. B. Murray, C. R. Kagan and M. G. Bawendi, Annu. Rev. Mater. Sci., 30, 545 (2000).
D. V. Talapin, S. Haubold, A. L. Rogach, A. Kornowski, M. Haase and H. Weller, J. Phys. Chem. B., 105, 2260 (2001).
N. Gaponik, D. V. Talapin, A. L. Rogach, K. Hoppe, E. V. Shevchenko, A. Kornowski, A. Eychmuller and H. Weller, J. Phys. Chem. B., 106, 7177 (2002).
L. Li, H. Qian, N. Fang and J. Ren, J. Lumin., 116, 59 (2006).
C. Ge, M. Xu, J. Liu, J. Lei and H. Ju, Chem. Commun., 450 (2008).
J. Tian, R. Liu, Y. Zhao, Q. Xu and S. Zhao, J. Colloid Interface Sci., 336, 504 (2009).
E. Elibol, M. Cadırcı and N. Tutkun, Synthesising Highly Luminescent CdTe Quantum Dots Using Cannula Hot Injection Method, in: Int. Conf. Quantum Dots (ICQD 2017), France/Paris (2017).
L. C. Frenette and T. D. Krauss, Nat. Commun., 8 (2017).
M. Planells, L. X. Reynolds, U. Bansode, S. Chhatre, S. Ogale, N. Robertson and S. A. Haque, Phys. Chem. Chem. Phys., 15, 7679 (2013).
O. Pitois, P. Moucheront and X. Chateau, J. Colloid Interface Sci., 231, 26 (2000).
M. W. Allen, Measurement of Fluorescence Quantum Yields, Thermo Sci., 1 (2010).
X. F. Ding, L. J. Wen, X. Zhou, Y. Y. Ding, X. C. Ye, L. Zhou, M. C. Liu, H. Cai and J. Cao, Chinese Phys. C., 39 (2015).
H. Forster, Mol. Sieves, 4, 337 (2004).
V. I. Klimov, Science (80-.), 290, 314 (2000).
A. D. Guclu, P. Potasz and P. Hawrylak, Phys. Rev. B - Condens. Matter Mater. Phys., 82 (2010).
W. W. Yu, Y. A. Wang and X. Peng, Chem. Mater., 15, 4300 (2003).
Z. Lu, C. X. Guo, H. Bin Yang, Y. Qiao, J. Guo and C. M. Li, J. Colloid Interface Sci., 353, 588 (2011).
J. Zhu, S. N. Wang, J. J. Li and J. W. Zhao, J. Lumin., 199, 216 (2018).
W. Shockley and H. J. Queisser, J. Appl. Phys., 32, 510 (1961).
A. Kalnaitytė, S. Bagdonas and R. Rotomskis, J. Lumin., 201, 434 (2018).
Z. Yu, J. Li, D. B. O’Connor, L. W. Wang and P. F. Barbara, J. Phys. Chem. B., 107, 5670 (2003).
J. S. Steckel, R. Colby, W. Liu, K. Hutchinson, C. Breen, J. Ritter and S. Coe-Sullivan, Dig. Tech. Pap. - SID Int. Symp., 44, 943 (2013).
F. Li, L. You, H. Li, X. Gu, J. Wei, X. Jin, C. Nie, Q. Zhang and Q. Li, J. Lumin., 192, 867 (2017).
Y. Zhang, J. Lumin., 192, 1015 (2017).
M. Amelia, C. Lincheneau, S. Silvi and A. Credi, Chem. Soc. Rev., 41, 5728 (2012).
R. He, X. You, H. Tian, F. Gao and D. Cui, Front. Chem. China., 3, 325 (2008).
A. Arivarasan, S. Bharathi, V. Vijayaraj, G. Sasikala and R. Jayavel, J. Inorg. Organomet. Polym. Mater., 28, 1263 (2018).
A. Ayyaswamy, S. Ganapathy, A. Alsalme, A. Alghamdi and J. Ramasamy, Superlattices Microstruct., 88, 634 (2015).
D. S. M. Ribeiro, G. C. S. de Souza, A. Melo, J. X. Soares, S. S. M. Rodrigues, A. N. Araujo, M. C. B. S. M. Montenegro and J. L. M. Santos, J. Mater. Sci., 52, 3208 (2017).
H. Bao, E. Wang and S. Dong, Small, 2, 476 (2006).
V. Lesnyak, S. V. Voitekhovich, P. N. Gaponik, N. Gaponik and A. Eychmuller, ACS Nano., 4, 4090 (2010).
A. L. Rogach, T. Franzl, T. A. Klar, J. Feldmann, N. Gaponik, V. Lesnyak, A. Shavel, A. Eychmüller, Y. P. Rakovich and J. F. J. Phys. Chem. C., 111, 14628 (2007).
S. Kiprotich, M. O. Onani and F. B. Dejene, Phys. B Condens. Matter., 535, 202 (2018).
R. E. Bailey and S. Nie, J. Am. Chem. Soc., 125, 7100 (2003).
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Elibol, E., Elibol, P.S., Çadırcı, M. et al. Improved photoluminescence and monodisperse performance of colloidal CdTe quantum dots with Cannula method. Korean J. Chem. Eng. 36, 625–634 (2019). https://doi.org/10.1007/s11814-019-0243-9
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11814-019-0243-9
Keywords
- Quantum Dots
- CdTe
- PLQY
- FWHM
- Cannula