Korean Journal of Chemical Engineering

, Volume 36, Issue 4, pp 584–590 | Cite as

Fabrication of tubular ceramic-supported malic acid cross-linked poly(vinyl alcohol)/rice husk ash-silica nanocomposite membranes for ethanol dehydration by pervaporation

  • Tran Minh Ngoc
  • Tran Minh Man
  • Mai Thanh Phong
  • Hoang Minh Nam
  • Nguyen Huu HieuEmail author
Separation Technology, Thermodynamics


Silica nanoparticles were prepared from rice husk ash (RHA-silica) by precipitation method. The characterization of RHA-silica was studied by X-ray fluorescence, X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), transmission electron microscopy, and Brunauer-Emmett-Teller specific surface area. Results showed that RHA-silica was successfully synthesized with a particle size of 5-15 nm and purity of 98.08%. The obtained RHA-silica was applied with different content for fabrication of tubular ceramic-supported poly(vinyl alcohol) membranes using malic acid as a cross-linking agent (RHA-silica/MA-PVA) by dip-coating and solvent evaporation methods. The tubular ceramic-supported RHA-silica/MA-PVA membranes were used for dehydration of 95 wt% ethanol solution by pervaporation (PV) technology. Results indicated membrane with 15 wt% RHA-silica (15RHA-silica/MA-PVA) was suitable for the dehydration with permeate flux of 0.0856 kg/m2·h, separation factor of 46.6, and pervaporation separation index of 3.9 kg/m2h. The tubular ceramic-supported 15RHA-silica/MA-PVA membrane was characterized using XRD, FTIR, scanning electron microscope, differential scanning calorimetry, and contact angle measurement. Results showed that this membrane was 30 μm thick, mechanical stable (swelling rate, 133.9%), hydrophobic (contact angle, 81°), and thermal stable (glass transition temperature, 138.7 °C). Therefore, the tubular ceramic-supported nanocomposite membrane could be considered as a potential alternative for PV dehydration of ethanol.


RHA-silica Poly(vinyl alcohol) Nanocomposite Tubular Membrane Dehydration Pervaporation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    T. Uragami, T. Saito and T. Miyata, Carbohydr. Polym., 120, 1 (2015).CrossRefGoogle Scholar
  2. 2.
    R. Baker, Membrane technology and applications, England, Second Edition, Wiley, 545 (2014).Google Scholar
  3. 3.
    Y. K. Ong, G. M. Shi, N. L. Le, Y. P. Tang, J. Zuo, S. P. Nunes and T. S. Chung, Prog. Polym. Sci., 57, 1 (2016).CrossRefGoogle Scholar
  4. 4.
    K. Hunger, N. Schmeling, H. B. T. Jeazet, C. Janiak, C. Staudt and K. Kleinermanns, Membranes, 2, 727 (2012).CrossRefGoogle Scholar
  5. 5.
    L. Liu and S. E. Kentish. J. Membr. Sci., 553, 63 (2018).CrossRefGoogle Scholar
  6. 6.
    Y. Zhu, S. Xia, G. Liu and W. Jin, J. Membr. Sci., 349, 341 (2010).CrossRefGoogle Scholar
  7. 7.
    N. M. Kha and N. H. Hieu, 5th World Conference on Applied Sciences, Engineering & Technology, Ho Chi Minh (2016).Google Scholar
  8. 8.
    N. N. P. Duy and N. H. Hieu, Eng. Trans., 56, 1693 (2017).Google Scholar
  9. 9.
    M. Sameia, M. Iravaniniaa, T. Mohammadia and A. A. Asadibi, Chem. Eng. Process. Process Intensif., 109, 11 (2016).CrossRefGoogle Scholar
  10. 10.
    H. Nagasawa and T. Tsuru, Current Trends and Future Developments on (Bio-) Membranes, 217, Elsevier (2017).Google Scholar
  11. 11.
    M. Samei, T. Mohammadi and A. A. Asadi, Chem. Eng. Res. Des., 91, 2703 (2013).CrossRefGoogle Scholar
  12. 12.
    H. Pingan, J. Mengjun, Z. Yanyan and H. Ling, RSC Adv., 7, 2450 (2017).CrossRefGoogle Scholar
  13. 13.
    S. Gu, J. Zhou, C. Yu, Z. Luo, Q. Wang and Z. Shi, Ind. Crops Prod., 65, 1 (2015).CrossRefGoogle Scholar
  14. 14.
    V. R. Shelke, S. S. Bhagade and S. A. Mandavgane, Bull. Chem. React. Eng. Catal., 5, 63 (2011).CrossRefGoogle Scholar
  15. 15.
    P. Velmurugan, J. Shim, K. J. Lee, M. Cho, S. S. Lim, S. K. Seo and B. T. Oh, J. Ind. Eng. Chem., 29, 298 (2015).CrossRefGoogle Scholar
  16. 16.
    J. Li, C. Yang, L. Zhang and T. Ma, J. Organomet. Chem., 696(9), 1845 (2011).CrossRefGoogle Scholar
  17. 17.
    C. N. H. Thuc and H. H. Thuc, Nanoscale Res. Lett., 8, 58 (2013).CrossRefGoogle Scholar
  18. 18.
    E. Rafiee, S. Shahebrahimi, M. Feyzi and M. Shaterzadeh, Int. Nano Lett., 2, 29 (2012).CrossRefGoogle Scholar
  19. 19.
    T. J. Alwan1, Z. A. Toma, M. A. Kudhier and K. M. Ziadan, Madridge J. Nano Tec. Sci., 1, 1 (2016).Google Scholar
  20. 20.
    Z. Peng, L. X. Kong, S. D. Li and P. Spiridonov, J. Nanosci. Nanotechnol., 6(12), 3934 (2006).CrossRefGoogle Scholar

Copyright information

© The Korean Institute of Chemical Engineers 2019

Authors and Affiliations

  • Tran Minh Ngoc
    • 1
  • Tran Minh Man
    • 1
  • Mai Thanh Phong
    • 2
  • Hoang Minh Nam
    • 1
    • 2
  • Nguyen Huu Hieu
    • 1
    • 2
    Email author
  1. 1.Key Laboratory of Chemical Engineering and Petroleum ProcessingHo Chi Minh City University of Technology - Vietnam National University (HCMUT - VNU)Ho Chi Minh CityVietnam
  2. 2.Faculty of Chemical EngineeringHCMUT - VNUHo Chi Minh CityVietnam

Personalised recommendations