Skip to main content
Log in

Pd nanoparticles immobilized on TiO2 nanotubes-functionalized ceramic membranes for flow-through catalysis

  • Catalysis, Reaction Engineering
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

A high performance catalytic membrane was fabricated with Pd nanoparticles supported by TiO2 nanotubes, where the TiO2 nanotubes were synthesized on the ceramic membrane via a simple hydrothermal etching. A flow-through catalytic membrane reactor was developed for testing the catalytic properties in the p-nitrophenol reduction. The effect of etching time was investigated in detail and an optimal etching time was determined to be 16 h. The characterization results highlighted that the as-prepared bouquet-like TiO2 nanotubes could significantly improve the loading amount and dispersity of Pd nanoparticles. The fabricated catalytic membrane exhibited considerably improved catalytic activity and stability, with a 100% conversion of p-nitrophenol and no loss in catalytic activity during five reaction cycles. The obtained activation energy was much lower than the values in literatures, implying that the p-nitrophenol reduction could take place more easily on our catalytic membranes compared to other catalysts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. Kageyama, P. Hacarlioglu, A. Takagaki, R. Kikuchi and S. T. Oyama, Sep. Purif. Technol., 185, 175 (2017).

    Article  CAS  Google Scholar 

  2. K. R. Hwang, S. K. Ihm and J. Park, Korean J. Chem. Eng., 27, 816 (2010).

    Article  CAS  Google Scholar 

  3. C. H. Kim, J. Y. Han, H. Lim, D. W. Kim and S. K. Ryi, Korean J. Chem. Eng., 34, 1260 (2017).

    Article  CAS  Google Scholar 

  4. V. M. Gryaznov, Russ. Chem. Rev., 32, 188 (1963).

    Article  Google Scholar 

  5. L. Meng and T. Tsuru, Catal. Today, 268, 3 (2016).

    Article  CAS  Google Scholar 

  6. J. S. Choi, I. K. Song and W. Y. Lee, Korean J. Chem. Eng., 17, 280 (2000).

    Article  CAS  Google Scholar 

  7. Y. M. Lin, G. L. Lee and M. H. Rei, Catal. Today, 44, 343 (1998).

    Article  CAS  Google Scholar 

  8. M. Vospernik, A. Pintar, G. Berci and J. Levec, Catal. Today, 79-80, 169 (2003).

    Article  CAS  Google Scholar 

  9. M. Liu, X. Zhu, R. Chen, Q. Liao, H. Feng and L. Li, Chem. Eng. J., 301, 35 (2016).

    Article  CAS  Google Scholar 

  10. Z. H. Zhao, G. H. Tong and X. Y. Tan, J. Chem. Technol. Biotechnol., 91, 2298 (2016).

    Article  CAS  Google Scholar 

  11. N. Diban, A. T. Aguayo, J. Bilbao, A. Urtiaga and I. Ortiz, Ind. Eng. Chem. Res., 52, 10342 (2013).

    Article  CAS  Google Scholar 

  12. M. Liu, Z. P. Zhao, K. C. Chen and W. F. Liu, Catal. Commun., 64, 70 (2015).

    Article  CAS  Google Scholar 

  13. R. L. Huang, H. X. Zhu, R. X. Su, W. Qi and Z. M. He, Environ. Sci. Technol., 50, 11263 (2016).

    Article  CAS  PubMed  Google Scholar 

  14. J. N. Armor, J. Membr. Sci., 147, 217 (1998).

    Article  CAS  Google Scholar 

  15. M. D. Wales, L. B. Joos, W. A. Traylor, P. Pfrommb and M. Rezac, Catal. Today, 268, 12 (2016).

    Article  CAS  Google Scholar 

  16. X. Y. Wang, J. C. Yang, M. P. Zhu and F. Li, J. Taiwan Inst. Chem. E., 44, 386 (2013).

    Article  CAS  Google Scholar 

  17. H. Mahdavi, A. Rahimi and T. Shahalizade, J. Polym. Res., 23, 1 (2016).

    Article  CAS  Google Scholar 

  18. R. Z. Chen, Y. G. Jiang, W. H. Xing and W. Q. Jin, Ind. Eng. Chem. Res., 52, 5002 (2013).

    Article  CAS  Google Scholar 

  19. S. Zhang, H. Jiang, Y. F. Liu and R. Z. Chen, Can._J. Chem. Eng., 95, 2374 (2017).

    Article  CAS  Google Scholar 

  20. Y. Du and R. Z. Chen, Korean J. Chem. Eng., 32, 1759 (2015).

    Article  CAS  Google Scholar 

  21. L. G. Dou and H. Zhang, J. Mater. Chem. A., 4, 18990 (2016).

    Article  CAS  Google Scholar 

  22. A. Shukla, R. K. Singha, T. Sasaki and R. Bal, Green Chem., 17, 785 (2015).

    Article  CAS  Google Scholar 

  23. M. Afrand, D. Toghraie and B. Ruhani, Exp. Therm Fluid Sci., 77, 38 (2016).

    Article  CAS  Google Scholar 

  24. M. Boron, A. Corma, F. Illas, J. Radill, T. Ródenas and M. J. Sabater, J. Catal., 278, 50 (2011).

    Article  CAS  Google Scholar 

  25. H. Huang, L. Pan, C. K. Lim, H. Gong, J. Guo, M. S. Tse and O. K. Tan, Small, 9, 3153 (2013).

    Article  CAS  PubMed  Google Scholar 

  26. D. Li, X. W. Cheng, X. J. Yu and Z. P. Xing, Chem. Eng. J., 279, 994 (2015).

    Article  CAS  Google Scholar 

  27. R. S. Zeng, K. Li, X. Sheng, L. P. Chen, H. J. Zhang and X. J. Feng, Chem. Commun., 52, 4045 (2016).

    Article  CAS  Google Scholar 

  28. J. B. Zhong, Y. Lu, W. D. Jiang, Q. M. Meng, X. Y. He, J. Z. Li and Y. Q. Chen, J. Hazard. Mater., 168, 1632 (2009).

    Article  CAS  PubMed  Google Scholar 

  29. M. Q. Lv, D. J. Zheng, M. D. Ye, L. Sun, J. Xiao, W. X. Guo and C. J. Lin, Nanoscale, 4, 5872 (2012).

    Article  CAS  PubMed  Google Scholar 

  30. M. Yurderi, A. Bulut, M. Zahmakiran, M. Gülcan and S. Özkar, Appl. Catal. B: Environ., 160, 534 (2014).

    Article  CAS  Google Scholar 

  31. A. Mansouri and N. Semagina, Appl. Catal. A, 543, 43 (2017).

    Article  CAS  Google Scholar 

  32. L. Liu, J. S. Qian, B. Li, Y. M. Cui, X. F. Zhou, X. F. Guo and W. P. Ding, Res. Chem. Intermed., 46, 1569 (2010).

    Google Scholar 

  33. R. Z. Chen, Y. G. Jiang, W. H. Xing and W. Q. Jin, Ind. Eng. Chem. Res., 50, 4405 (2011).

    Article  CAS  Google Scholar 

  34. C. Ao, P. F. Tian, L. Ouyang, G. J. Da, X. Y. Xu, J. Xu and Y. F. Han, Catal. Sci. Technol., 6, 5060 (2016).

    Article  CAS  Google Scholar 

  35. G. W. Zhan, Y. L. Hong, F. F. Lu, A. R. Ibrahim, M. M. Du, D. H. Sun, J. L. Huang, Q. B. Li and J. Li, J. Mol. Catal. A: Chem., 366, 215 (2013).

    Article  CAS  Google Scholar 

  36. V. K. Gupta, N. Atar, M. L. Yola, Z. Ustundag and L. Uzun, Water Res., 48, 210 (2014).

    Article  CAS  PubMed  Google Scholar 

  37. Y. C. Chang and D. H. Chen, J. Hazard. Mater., 165, 664 (2009).

    Article  CAS  PubMed  Google Scholar 

  38. J. Feng, L. Su, Y. H. Ma, C. L. Ren, Q. Guo and X. G. Chen, Chem. Eng. J., 221, 16 (2013).

    Article  CAS  Google Scholar 

  39. Z. Y. Wang, X. Chen, K. Li, S. Y. Bi, C. L. Wu and L. Chen, J. Membr. Sci., 496, 95 (2015).

    Article  CAS  Google Scholar 

  40. S. Y. Bi, K. Li, X. Chen, W. G. Fu, L. Chen, H. Y. Sheng and Q. Yang, Polym. Compos., 35, 2251 (2015).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rizhi Chen.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Miao, J., Liu, X., Jiang, H. et al. Pd nanoparticles immobilized on TiO2 nanotubes-functionalized ceramic membranes for flow-through catalysis. Korean J. Chem. Eng. 36, 385–392 (2019). https://doi.org/10.1007/s11814-018-0219-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-018-0219-1

Keywords

Navigation