Skip to main content
Log in

The effects of main anoxic section oxidation-reduction potential on the metabolism of PHA and TP in continuous-flow single-sludge treatment system

  • Environmental Engineering
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

The experimental results and material balance analysis in this paper revealed the regularity of poly-hydroxy alkanoates (PHA) and total phosphorus (TP) metabolism in a continuous-flow single-sludge wastewater treatment system under different main anoxic section oxidation-reduction potential (ORPan) conditions. We also evaluated the effectiveness of the operation control parameters of ORPan as the continuous-flow single-sludge sewage treatment system from the aspect of the reaction mechanism. Using a programmable logic controller (PLC) automatic control system to take the circulating flow in nitrification as the controlled variable based on the feedback control structure, an experimental study was carried out under the condition of ORPan setting value of −143mV, −123mV, −105mV, −95mV, −72 mV and −57mV, respectively, with other operational design parameters remaining unchanged. Influent water quality of chemical oxygen demand/total nitrogen (COD/TN) was 5.0±0.6. The results showed that when ORPan was set at −95mV, the maximum values of PHA synthesis and storage rate, PHA degradation rate, phosphorus release rate and phosphorus absorption rate in anaerobic and pre-anoxic segments were 82.34, 7.90, 47.31, 14.27, 1.50 and 8.52mg/ (L·h), respectively. According to the metabolic mechanism of PHA and TP, ORPan was further proved to be the operation control parameter of the continuous-flow single-sludge sewage treatment system, and when the COD/TN value was 5.0±0.6, the optimal setting value was −95mV.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y. Sun, Z. Chen, G. X. Wu, Q. Y. Wu, F. Zhang, Z. B. Niu and H. Y. Hu, J. Cleaner Production, 131, 1 (2016).

    Article  CAS  Google Scholar 

  2. Y. Yang, Y. S. Ok, K. H. Kim, E. E. Kwon and Y. F. Tsang, Sci. Total Environ., 596-597, 303 (2017).

    Article  CAS  PubMed  Google Scholar 

  3. J. Guerrero, A. Guisasola and J. A. Baeza, Water Res., 45, 4793 (2011).

    Article  CAS  PubMed  Google Scholar 

  4. Y. X. Zhu, X. J. Tu, X. S. Chai, Q. Wei and L. N. Guo, Bioresour. Technol., 251, 7 (2018).

    Article  CAS  PubMed  Google Scholar 

  5. W. Zeng, L. Li, Y. Y. Yang, X. D. Wang and Y. Z. Peng, Enzyme Microb. Technol., 48, 134 (2011).

    Article  CAS  PubMed  Google Scholar 

  6. Q. Y. Yuan and J. Oieszkiewicz, Desalination and Water Treatment, 22, 72 (2010).

    Article  CAS  Google Scholar 

  7. A. G. Kapagiannidis, I. Zafiriadis and A. Aivasidis, New Biotechnol., 30, 227 (2013).

    Article  CAS  Google Scholar 

  8. H. M. Zou and Y. Wang, Bioresour. Technol., 221, 87 (2016).

    Article  CAS  Google Scholar 

  9. S. M. Souza, O. Q. F. Araújo and M. A. Z. Coelho, Bioresour. Technol., 99, 3213 (2008).

    Article  CAS  PubMed  Google Scholar 

  10. E. Vaiopoulou and A. Aivasidis, Chemosphere, 72, 1062 (2008).

    Article  CAS  PubMed  Google Scholar 

  11. J. M. Duan, W. Li, K. Zhao and J. Krampe, Desalination and Water Treatment, 40, 24 (2012).

    CAS  Google Scholar 

  12. L. Peng, X. H. Dai, Y. W. Liu, J. Sun, S. X. Song and B. J. Ni, Chemosphere, 197, 430 (2018).

    Article  CAS  PubMed  Google Scholar 

  13. G. Bortone, S. Marsili Libelli, A. Tilche and J. Wanner, Water Sci. Technol., 40, 177 (1999).

    Article  CAS  Google Scholar 

  14. J. H. Wang, L. Wang, E. Y. Cui and H. Lu, Korean J. Chem. Eng., 35, 1274 (2018).

    Article  CAS  Google Scholar 

  15. Y. V. Nancharaiah, S. Venkata Mohan and P. N. L. Lens, Bioresour. Technol., 215, 173 (2016).

    Article  CAS  PubMed  Google Scholar 

  16. M. A. Cardete, J. Mata-Álvarez, J. Dosta and R. Nieto-Sánchez, J. Environ. Chem. Eng., 5, 3472 (2017).

    Article  CAS  Google Scholar 

  17. X. L. Wang, J. Yin and S. Gao, Environ. Sci., 33, 175 (2012).

    CAS  Google Scholar 

  18. G. B. Zhu, Y. Z. Peng, S. Y. Wang, S. Y. Wu and B. Ma, Chem. Eng. J., 131, 319 (2007).

    Article  CAS  Google Scholar 

  19. A. Soares, P. Kampas, S. Maillard, E. Wood, J. Brigg, M. Tillotson, S. A. Parsons and E. Cartmell, J. Hazard. Mater., 175, 733 (2010).

    Article  CAS  PubMed  Google Scholar 

  20. J. Bergendahl and L. Stevens, Environ. Progress, 24, 214 (2005).

    Article  CAS  Google Scholar 

  21. P. Pagacova, A. Blstakova and M. Drtil, Continually Measured ORP and pH Signal for Control of Nitrogen Removal, Springer Netherlands (2002).

  22. M. V. Ruano, J. Ribes, A. Seco and J. Ferrer, Chem. Eng. J., 183, 212 (2012).

    Article  CAS  Google Scholar 

  23. Y. Ma, Y. Z. Peng and S. Y. Wang, China Environ. Sci., 25, 252 (2005).

    CAS  Google Scholar 

  24. H. T. Kim, G. S. Kim, S. W. Shin, S. H. Oh and K. H. Kim, KSCE J. Civil Eng., 9, 73 (2005).

    Article  Google Scholar 

  25. X. Liu, Q. W. Chen and L. Zhu, J. Environ. Sci., 47, 174 (2016).

    Article  Google Scholar 

  26. S. H. Chuang and C. F. Ouyang, Water Res., 34, 2283 (2000).

    Article  CAS  Google Scholar 

  27. I. G. München and I. K. Braunschweig, Design of Single Stage Activated Sludge Wastewater Treatment Plant, GFA Publishing Company, Hennef (2000).

  28. Water Environment Federation, Design of Municipal Wastewater Treatment Plants, Volume 2: Liquid Treatment Processes, McGraw-Hill, Inc., New York (2010).

  29. Shanghai Municipal Engineering Design Institute (Group) Co., LTD, Code for design of outdoor wastewater engineering, China Planning Press, Beijing (2016).

  30. X. F. Wang, Method for Monitoring and Analyzing Water and Waste Water, China Environmental Science Press Pub, Beijing (2002).

    Google Scholar 

  31. A. C. Maizel and C. K. Remucal, Water Res., 122, 42 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. X. L. Wang, T. H. Song and X. D. Yu, Desalination and Water Treatment, 56, 1877 (2015).

    Article  CAS  Google Scholar 

  33. X. L. Wang, T. H. Song and Y. Yin, Environ. Sci., 36, 2617 (2015).

    CAS  Google Scholar 

  34. P. Caulet, B. Bujon, J. P. Philippe, F. Lefevre and J. M. Audic, Water Sci. Technol., 37, 41 (1998).

    Article  CAS  Google Scholar 

  35. T. Kuba and M. C. M. van Loosdrechtt, Water Sci. Technol., 27, 241 (1993).

    Article  CAS  Google Scholar 

  36. M. Henze, M. C. M. van Loosdrecht, G. A. Ekama and D. Brdjanovic, Biological Wastewater Treatment: Principles, Modelling and Design, IWA Publishing, London (2010).

  37. N. Boontian, Eng. Technol., 64, 984 (2012).

    Google Scholar 

  38. D. S. Bi, X. P. Guo and D. H. Chen, Water Sci. Technol., 67, 1953 (2013).

    Article  CAS  PubMed  Google Scholar 

  39. M. G. Kim and G. Nakhla, Water Environ. Res., 82, 69 (2010).

    Article  CAS  PubMed  Google Scholar 

  40. R. Qi, T. Yu, Z. L. Li and D. Li, J. Environ. Sci., 24, 571 (2012).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hai Lu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, X., Lu, H., Song, T. et al. The effects of main anoxic section oxidation-reduction potential on the metabolism of PHA and TP in continuous-flow single-sludge treatment system. Korean J. Chem. Eng. 36, 411–422 (2019). https://doi.org/10.1007/s11814-018-0213-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-018-0213-7

Keywords

Navigation