Skip to main content
Log in

Development of surrogate model using CFD and deep neural networks to optimize gas detector layout

  • Process Systems Engineering, Process Safety
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

To reduce damage arising from accidents in chemical processing plants, detection of the incident must be rapid to mitigate the danger. In the case of the gas leaks, detectors are critical. To improve efficiency, leak detectors must be installed at locations after considering various factors like the characteristics of the workspace, processes involved, and potential consequences of the accidents. Thus, the consequences of potential accidents must be simulated. Among various approaches, computational fluid dynamics (CFD) is the most powerful tool to determine the consequences of gas leaks in industrial plants. However, the computational cost of CFD is large, making it prohibitively difficult and expensive to simulate many scenarios. Thus, a deep-neural-network-based surrogate model has been designed to mimic FLACS (FLame ACceleration Simulator), one of the most important programs in the modeling of gas leaks. Using the simulated results of a proposed surrogate model, a sensor allocation optimization problem was solved using mixed integer linear programming (MILP). The optimal solutions produced by the proposed surrogate model and FLACS were compared to verify the efficacy of the proposed surrogate model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. R. Hanna, M. J. Brown, F. E. Camelli, S. T. Chan, W. J. Coirier, S. Kim, O. R. Hansen, A. H. Huber and R. M. Reynolds, Bull. Amer. Meteorol. Soc., 87, 1713 (2006).

    Article  Google Scholar 

  2. S. R. Hanna, O. R. Hansen, M. Ichard and D. Strimaitis, Atm. Environ., 43, 262 (2009).

    Article  CAS  Google Scholar 

  3. K. J. Long, F. J. Zajaczkowski, S. E. Haupt and L. J. Peltier, JCP, 4, 881 (2009).

    Google Scholar 

  4. Z. T. Xie, P. Hayden and C. R. Wood, Atm. Environ., 71, 64 (2013).

    Article  CAS  Google Scholar 

  5. D. Hamel, M. Chwastek, B. Farouk, K. Dandekar and M. Kam, Proceedings of the 2006 IEEE International Workshop on, 38 (2006).

    Google Scholar 

  6. J. Berry, W. E. Hart, C. A. Phillips, J. G. Uber and J.-P. Watson, J. Water Res. Plan. Man., 132, 218 (2006).

    Article  Google Scholar 

  7. S. W. Legg, A. Benavides-Serrano, J. D. Siirola, J.-P. Watson, S. Davis, A. Bratteteig and C. D. Laird, Comput. Chem. Eng., 47, 194 (2012).

    Article  CAS  Google Scholar 

  8. S. W. Legg, C. Wang, A. J. Benavides-Serrano and C. Laird, J. Loss Prev. Process. Ind., 26, 410 (2013).

    Article  Google Scholar 

  9. A. J. Benavides-Serrano, S. W. Legg, R. Vázquez-Román, M. Mannan and C. D. Laird, Ind. Eng. Chem. Res., 53, 5355 (2013).

    Article  CAS  Google Scholar 

  10. A. J. Benavides-Serrano, M. Mannan and C. D. Laird, AIChE J., 62, 2728 (2016).

    Article  CAS  Google Scholar 

  11. A. J. Benavides-Serrano, M. Mannan and C. D. Laird J. Loss Prev. Process. Ind., 35, 339 (2015).

    Article  CAS  Google Scholar 

  12. S. Davis, O. R. Hansen, F. Gavelli and A. Bratteteig, Using CFD to Analyze Gas Detector Placement in Process Facilities. In: GexCon (2015).

    Google Scholar 

  13. R. Vázquez-Román, C. Díaz-Ovalle, E. Quiroz-Pérez and M. S. Mannan, J. Loss Prev. Process. Ind., 44, 633 (2016).

    Article  Google Scholar 

  14. E. G. Gomes, R. de Andrade Medronho and J. V. B. Alves, Gas Detector Placement in Petroleum Process Unit Using Computational Fluid Dynamics. International Journal of Modeling and Simulation for the Petroleum Industry, 8 (2014).

    Google Scholar 

  15. K. Wang, T. Chen, S. T. Kwa, Y. Ma and R. Lau, Comput. Chem. Eng., 69, 89 (2014).

    Article  CAS  Google Scholar 

  16. L. Margheri and P. Sagaut, J. Comput. Phys., 324, 137 (2016).

    Article  Google Scholar 

  17. J. Na, K. Jeon and W. B. Lee, Chem. Eng. Sci., 181, 68 (2018).

    Article  CAS  Google Scholar 

  18. B. E. Launder and D. B. Spalding, Comput. Meth. in Appl. Mech. Eng., 3, 269 (1974).

    Article  Google Scholar 

  19. GexCon AS, FLACS v10. 7 Users Manual (2017).

  20. O. R. Hansen, F. Gavelli, M. Ichard and S. G. Davis, J. Loss Prev. Process. Ind., 23, 857 (2010).

    Article  CAS  Google Scholar 

  21. I. Goodfellow, Y. Bengio and A. Courville, Deep Learning, MIT Press (2016).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Won Bo Lee.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jeon, K., Yang, S., Kang, D. et al. Development of surrogate model using CFD and deep neural networks to optimize gas detector layout. Korean J. Chem. Eng. 36, 325–332 (2019). https://doi.org/10.1007/s11814-018-0204-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-018-0204-8

Keywords

Navigation