Skip to main content
Log in

Quantification of recalcitrant organic compounds during their removal test by a novel and economical method based on chemical oxygen demand analysis

  • Environmental Engineering
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

This article proposes the use of mathematical models obtained by the Pearson correlation between the concentration of various recalcitrant organic compounds (ROCs) measured by chromatographic analysis (ChrA) and experimental chemical oxygen demand (COD). The aim is to reduce the number of samples processed by the ChrA, diminishing the economic costs of analysis. Ten ROCs, including pesticides, colorants, aromatic hydrocarbons and pharmaceuticals compounds, were introduced into four advanced oxidation processes operated at different residence times. Every ROC was tested at each residence time by COD determination and by quantification of concentrations with ChrA. Furthermore, chemical equations for the COD reaction of every ROC were formulated. A linear model was obtained for all the ROCs, after corroborating that the correlation between theoretical and experimental COD was >0.99, which established the ROC concentration from the experimental COD, omitting the ChrA. Results indicated that it is possible to know concentrations in most of the ROCs by means of the experimental COD with a >99±0.01% of accuracy, which leads to a cost decrease and even to evaluate methods in developing countries, which often do not have chromatographs and where pollution issues are meaningful.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Zhang and M. Mastalerz, Chem. Soc. Rev., 43(6), 1934 (2014).

    Article  CAS  PubMed  Google Scholar 

  2. F. P. Carvalho, Food Energy Secur., 6(2), 48 (2017).

    Article  Google Scholar 

  3. H. Jin, S. Liu, W. Wei, D. Zhang, Z. Cheng and L. Guo, Energy Fuels, 29(10), 6342 (2015).

    Article  CAS  Google Scholar 

  4. Environmental Protection Agency of United States, https://doi.org/www.epa.gov/international-cooperation/persistent-organic-pollutants-global-issue-global-response).

  5. L. C. Sander, M. M. Schantz and S. A. Wise, in Liquid Chromatography Applications, Ed. by S. Fanali, C. F. Poole, P. R. Haddad and M. L. Riekkola, Elsiever Inc., New York (2017).

  6. L. A. Schaider, K. M. Rodgers and R. A. Rudel, Environ. Sci. Technol., 51(13), 7304 (2017).

    Article  CAS  PubMed  Google Scholar 

  7. J. M. Barrera-Andrade, J. A. García-M, A. E. Jiménez-G, R. Zanella-S, L. S. Gelover-S and M. C. Duran-Dominguez-de-Bazua, J. Adv. Oxid. Technol., 17(1), 152 (2014).

    Google Scholar 

  8. J. E. Hardoy, D. Mitlin and D. Satterthwaite, Environmental problems in an urbanizing world: finding solutions in cities in Africa, Asia and Latin America, 2nd Ed., Routledge, Abingdon-on-Thames, 464 (2013).

    Book  Google Scholar 

  9. J. M. Dean, International Trade and the Environment, 1st Ed., Taylor and Francis, London, 60 (2017).

    Book  Google Scholar 

  10. J. Li, G. Luo, L. J. He, J. Xu and J. Lyu, Crit. Rev. Anal. Chem., 48(1), 47 (2018).

    Article  CAS  PubMed  Google Scholar 

  11. R. B. Geerdink, R. S. van den Hurk and O. J. Epema, Anal. Chim. Acta., 961, 1 (2017).

    Article  CAS  PubMed  Google Scholar 

  12. A. A. Bletsou, J. Jeon, J. Hollender, E. Archontaki and N. S. Thomaidis, TrAC, Trends Anal. Chem., 66, 32 (2015).

    Article  CAS  Google Scholar 

  13. J. L. Liu and M. H. Won, Environ. Int., 59, 208 (2013).

    Article  CAS  PubMed  Google Scholar 

  14. W. L. Liew, M. A. Kassim, K. Muda, S. K. Loh and A. C. Affam, J. Environ., 149, 222 (2015).

    CAS  Google Scholar 

  15. R. Meffe and I. de Bustamante, Sci. Total Environ., 481, 280 (2014).

    Article  CAS  PubMed  Google Scholar 

  16. A. Klančar, J. Trontelj, A. Kristl, A. Meglič, T. Rozina, M. Z. Justin and R. Roškar, Ecol. Eng., 97, 186 (2016).

    Article  Google Scholar 

  17. F. Ahmadi, Y. Assadi, S. M. Hosseini and M. Rezaee, J. Chromatogr. A., 1101, 1 (2006).

    Article  CAS  Google Scholar 

  18. H. P. Li, G. C. Li and J. F. Jen, J. Chromatogr. A., 1012, 2 (2003).

    Google Scholar 

  19. J. N. Bianchin, G. Nardini, J. Merib, A. N. Dias, E. Martendal and E. Carasek, J. Chromatogr. A., 1233, 22 (2012).

    Article  CAS  PubMed  Google Scholar 

  20. P. Poinot, F. Qin, M. Lemoine, V. Yvon, J. Ledauphin and J. L. Gaillard, J. Food Compos. Anal., 35(2), 83 (2014).

    Article  CAS  Google Scholar 

  21. M. Kucharska and J. Grabka, Talanta, 80(3), 1045 (2010).

    Article  CAS  PubMed  Google Scholar 

  22. J. L. Santos, I. Aparicio, E. Alonso and M. Callejón, Anal. Chim. Acta, 550(1–2), 116 (2005).

    Article  CAS  Google Scholar 

  23. E. W. Rice, R. B. Baird, A. D. Eaton and L. S. Clesceri, Standard Methods for the Examination of Water and Wastewater, 22th Ed., American Public Health Association, Water Environment Federation, Denver, 1496 (2012).

    Google Scholar 

  24. S. Manahan, Environmental Chemistry, 10th Ed., CRC press, Boca Raton, FL, 752 (2017).

    Google Scholar 

  25. M. Behloul, H. Grib, N. Drouiche, N. Abdi, H. Lounici and N. Mameri, Sep. Sci. Technol., 48(4), 664 (2013).

    Article  CAS  Google Scholar 

  26. D. M. Fouad and M. B. Mohamed, J. Nanomater., 2012(2), 1 (2012).

    Article  CAS  Google Scholar 

  27. P. V. Laxma Reddy and K. H. Kim, J. Hazard. Mater., 285, 325 (2015).

    Article  CAS  Google Scholar 

  28. O. Autin, J. Hart, P. Jarvis, J. MacAdam, S. A. Parsons and B. Jefferson, Water Resour., 47(6), 2041 (2013).

    CAS  Google Scholar 

  29. N. S. Shah, X. He, H. M. Khan, J. A. Khan, K. E. O’Shea, D. L. Boccelli and D. D. Dionysiou, J. Hazard. Mater., 263, 584 (2013).

    Article  CAS  PubMed  Google Scholar 

  30. M. A. Oturan and J. J. Aaron, Crit. Rev. Environ. Sci. Technol., 44(23), 2577 (2014).

    Article  CAS  Google Scholar 

  31. X. T. Bui, T. P. T. Vo, H. H. Ngo, W. S. Guo and T. T. Nguyen, Sci. Total Environ., 563, 1050 (2014).

    Google Scholar 

  32. D. Yang, S. Qi, J. Zhang, C. Wu and X. Xing, Ecotoxicol. Environ. Saf., 89, 59 (2013).

    Article  CAS  PubMed  Google Scholar 

  33. W. A. Al-Amrani, P. E. Lim, C. E. Seng and W. W. Wan Ngah, J. Taiwan Inst. Chem. Eng., 45, 609 (2014).

    Article  CAS  Google Scholar 

  34. L. Feng, van E. D. Hullebusch, M. A. Rodrigo, G. Esposito and M. A. Oturan, Chem. Eng. J., 228, 944 (2013).

    Article  CAS  Google Scholar 

  35. D. P. Mohapatra, S. K. Brar, R. D. Tyagi, P. Picard and R. Y. Surampalli, Sci. Total Environ., 470, 58 (2014).

    Article  PubMed  CAS  Google Scholar 

  36. X. Liu, P. Lv, G. Yao, C. Ma, Y. Tang, Y. Wu and Y. Yan, Colloids Surf., A, 441, 420 (2014).

    Article  CAS  Google Scholar 

  37. L. P. Ramteke and P. R. Gogate, Process Saf. Environ. Prot., 95, 146 (2015).

    Article  CAS  Google Scholar 

  38. Z. W. Cheng, L. Feng, J. M. Chen, J. M. Yu and Y. F. Jiang, J. Hazard. Mater., 254, 354 (2013).

    Article  PubMed  CAS  Google Scholar 

  39. Y. Zhang, C. S. Guo, J. Xu, Y. Z. Tian, G. L. Shi and Y. C. Feng, Water Res., 46(9), 3065 (2012).

    Article  CAS  PubMed  Google Scholar 

  40. P. Singh, K. Mondal and A. Sharma, J. Colloid Interface Sci., 394, 208 (2013).

    Article  CAS  PubMed  Google Scholar 

  41. A. Buthiyappan, A. R. A. Aziz and W. M. A. W Daud, Rev. Chem. Eng., 32(1), 1 (2014).

    Article  CAS  Google Scholar 

  42. F. H. Borba, A. N. Modenes, F. R. Espinoza-Quinones, D. R. Manenti, R. Bergamasco and N. D. Mora, Environ. Technol., 34, 653 (2013).

    Article  CAS  PubMed  Google Scholar 

  43. F. I. Hai, K. Yamamoto and K. Fukushi, Crit. Rev. Environ. Sci. Technol., 374(4), 315 (2007).

    Article  CAS  Google Scholar 

  44. F. M. Amaral, M. T. Kato, L. Florêncio and S. Gavazza, Bioresour. Technol., 163, 364 (2014).

    Article  CAS  PubMed  Google Scholar 

  45. M. Bahrami and A. Nezamzadeh-Ejhieh, Mater. Sci. Semicond. Process., 30, 275 (2015).

    Article  CAS  Google Scholar 

  46. A. Nezamzadeh-Ejhieh and F. Khodabakhshi-Chermahini, J. Ind. Eng. Chem., 20, 695 (2014).

    Article  CAS  Google Scholar 

  47. U. Hübner, B. Seiwert, T. Reemtsma and M. Jekel, Water Res., 49, 34 (2014).

    Article  PubMed  CAS  Google Scholar 

  48. N. H. M. Azmi Ayodele, O. B. Vadivelu, V. M. Asif and B. H. Hameed, J. Taiwan Inst. Chem. Eng., 45, 1459 (2014).

    Article  CAS  Google Scholar 

  49. J. Blanco, F. Torrades, M. Morrón, M. Brouta-Agnésa and J. García-Montaño, Chem. Eng. J., 240, 469 (2014).

    Article  CAS  Google Scholar 

  50. D. Montgomery and C. Jennings, Introduction to Statistical Quality Control, 7th Ed., John Wiley & Sons Inc., London, 754 (2012).

    Google Scholar 

  51. B. W. Berry, M. C. Martínez-Rivera and C. Tommos, Proc. Natl Acad. Scie., 109(25), 9739 (2012).

    Article  CAS  Google Scholar 

  52. T. Yang, L. Zhang, A. Wang and H. Gao, Inf. Sci., 235, 55 (2013).

    Article  Google Scholar 

  53. M. Kwon, S. Kim, Y. Yoon, Y. Jung, T. M. Hwang, J. Lee and J. W. Kang, Chem. Eng. J., 269, 379 (2015).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leonel Ernesto Amabilis-Sosa.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rodríguez-Mata, A.E., Amabilis-Sosa, L.E., Roé-Sosa, A. et al. Quantification of recalcitrant organic compounds during their removal test by a novel and economical method based on chemical oxygen demand analysis. Korean J. Chem. Eng. 36, 423–432 (2019). https://doi.org/10.1007/s11814-018-0203-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-018-0203-9

Keywords

Navigation