Skip to main content

Reactive insights into the hydrogen production from ammonia borane facilitated by phosphonium based ionic liquid

Abstract

The current work presents a mechanistic insight of hydrogen production from ammonia borane (AB) facilitated by the phosphonium based ionic liquid (IL), trihexyl(tetradecyl)phosphonium bis (2,4,4-trimethylpentyl) phosphinate ([TDTHP][Phosph]). Prior to experiments, the IL was screened from a pool of 11 phosphonium ILs with the infinite dilution activity coefficients (IDAC) values as predicted by conductor like screening model segment activity coefficient (COSMO-SAC) theory. Thereafter, a dehydrogenation experiment of AB/[TDTHP][Phosph] was carried out at 105 °C and 4×10-2 mbar of gauge pressure, which yielded 2.07 equivalent hydrogen production. At higher temperature, the 11B NMR characterization shows the suppression of induction period at 105 °C and appearance of borohydride anion after 1 min of dehydrogenation. Further, time-resolved characterization of AB/[TDTHP][Phosph] at 105 °C confirmed the appearance of polymeric aminoborane after 10min with a subsequent formation of polyborazylene. HR-MS characterization coupled with 1H resonance spectrum confirmed structural integrity of IL. The dual characterization of NMR and HR-MS led us to propose a dehydrogenation mechanism of AB/[TDTHP][Phosph] system.

This is a preview of subscription content, access via your institution.

References

  1. T. Richardson, S. de Gala, R. H. Crabtree and P. E. M. Siegbahn, J. Am. Chem. Soc., 117, 12875 (1995).

    Article  CAS  Google Scholar 

  2. J. Li, F. Zhao and F. Jing, J. Chem. Phys., 116, 25 (2002).

    Article  CAS  Google Scholar 

  3. A. Al-Kukhun, H. T. Hwang and A. Varma, Ind. Eng. Chem. Res., 50, 8824 (2011).

    Article  CAS  Google Scholar 

  4. G. Cinti, D. Frattini, E. Jannelli, U. Desideri and G. Bidini, Appl. Energy, 192, 466 (2017).

    Article  CAS  Google Scholar 

  5. F. H. Stephens, V. Pons and R. T. Baker, Dalton Trans., 2613 (2007).

    Google Scholar 

  6. A. Rossin and M. Peruzzini, Chem. Rev., 116, 8848 (2016).

    Article  CAS  PubMed  Google Scholar 

  7. A. Gutowska, L. Li, Y. Shin, C. M. Wang, X. S. Li, J. C. Linehan, R. S. Smith, B. D. Kay, B. Schmid, W. Shaw, M. Gutowski and T. Autrey, Angew. Chem., Int. Ed., 44, 3578 (2005).

    Article  CAS  Google Scholar 

  8. H.-L. Jiang and Q. Xu, Catal. Today, 170, 56 (2011).

    Article  CAS  Google Scholar 

  9. D. W. Himmelberger, L. R. Alden, M. E. Bluhm and L. G. Sneddon, Inorg. Chem., 48, 9883 (2009).

    Article  CAS  PubMed  Google Scholar 

  10. M. A. P. Martins, C. P. Frizzo, D. N. Moreira, N. Zanatta and H. G. Bonacorso, Chem. Rev., 108, 2015 (2008).

    Article  CAS  PubMed  Google Scholar 

  11. T. Welton, Chem. Rev., 99, 2071 (1999).

    Article  CAS  PubMed  Google Scholar 

  12. R. M. Vrikkis, K. J. Fraser, K. Fujita, D. R. MacFarlane and G. D. Elliott, J. Biomech. Eng., 131, 074514 (2009).

    Article  PubMed  Google Scholar 

  13. C. V. Manohar, D. Rabari, A. A. P. Kumar, T. Banerjee and K. Mohanty, Fluid Phase Equilib., 360, 392 (2013).

    Article  CAS  Google Scholar 

  14. M. E. Bluhm, M. G. Bradley, R. Butterick, U. Kusari and L. G. Sneddon, J. Am. Chem. Soc., 128, 7748 (2006).

    Article  CAS  PubMed  Google Scholar 

  15. T. Nakagawa, A. K. Burrell, R. E. Del Sesto, M. T. Janicke, A. L. Nekimken, G. M. Purdy, B. Paik, R.-Q. Zhong, T. A. Semelsberger and B. L. Davis, RSC Adv., 4, 21681 (2014).

    Article  CAS  Google Scholar 

  16. R. K. Ahluwalia, J. K. Peng, and T. Q. Hua, Int. J. Hydrogen Energy, 36, 15689 (2011).

    Article  CAS  Google Scholar 

  17. S. Mahato, B. Banerjee, G. Pugazhenthi and T. Banerjee, Int. J. Hydrogen Energy, 40, 10390 (2015).

    Article  CAS  Google Scholar 

  18. M. J. Valero-Pedraza, A. Martín-Cortés, A. Navarrete, M. D. Bermejo and Á. Martín, Energy, 91, 742 (2015).

    Article  CAS  Google Scholar 

  19. S. Gatto, O. Palumbo, F. Trequattrini and A. Paolone, J. Therm. Anal. Calorim., 129, 663 (2017).

    Article  CAS  Google Scholar 

  20. N. Sahiner and D. Alpaslan, J. Appl. Polym. Sci., 131, 40183 (2014).

    Article  Google Scholar 

  21. W. R. H. Wright, E. R. Berkeley, L. R. Alden, R. T. Baker and L. G. Sneddon, Chem. Commun., 47, 3177 (2011).

    Article  CAS  Google Scholar 

  22. S. S. Mal, F. H. Stephens and R. T. Baker, Chem. Commun., 47, 2922 (2011).

    Article  CAS  Google Scholar 

  23. B. D. Rekken, A. E. Carre-Burritt, B. L. Scott and B. L. Davis, J. Mater. Chem. A, 2, 16507 (2014).

    Article  CAS  Google Scholar 

  24. R. K. Blundell and P. Licence, Phys. Chem. Chem. Phys., 16, 15278 (2014).

    Article  CAS  PubMed  Google Scholar 

  25. F. Atefi, M. T. Garcia, R. D. Singer and P. J. Scammells, Green Chem., 11, 1595 (2009).

    Article  CAS  Google Scholar 

  26. R. E. Del Sesto, C. Corley, A. Robertson and J. S. Wilkes, J. Organomet. Chem., 690, 2536 (2005).

    Article  CAS  Google Scholar 

  27. E. Frackowiak, G. Lota and J. Pernak, J., Appl. Phys. Lett., 86, 164104 (2005).

    Article  CAS  Google Scholar 

  28. K. Tsunashima, and M. Sugiya, Electrochem. Commun., 9, 2353 (2007).

    Article  CAS  Google Scholar 

  29. C. J. Bradaric, A. Downard, C. Kennedy, A. J. Robertson and Y. Zhou, Green Chem., 5, 143 (2003).

    Article  CAS  Google Scholar 

  30. C. Zhang, B. Xin, Z. Xi, B. Zhang, Z. Li, H. Zhang, Z. Li and J. Hao, ACS Sustainable Chem. Eng., 6, 1468 (2018).

    Article  CAS  Google Scholar 

  31. Y. Shia and B. Zhang, Chem. Soc. Rev., 45, 1529 (2016).

    Article  Google Scholar 

  32. J. F. Callejas, C. G. Read, C. W. Roske, N. S. Lewis and R. E. Schaak, Chem. Mater., 28, 6017 (2016).

    Article  CAS  Google Scholar 

  33. R. Dennington, T. Keith and J. Millam, GaussView (Version 5), Semichem Inc., Shawnee Mission, KS (2009).

    Google Scholar 

  34. M. J. Frisch, et al., Gaussian 09 (Revision D.01), Gaussian, Inc., Wallingford, CT (2013).

    Google Scholar 

  35. A. D. Becke, J. Chem. Phys., 98, 5648 (1993).

    Article  CAS  Google Scholar 

  36. C. Lee, W. Yang and R. G. Parr, Phys. Rev. B: Condens. Matter Mater. Phys., 37, 785 (1988).

    Article  CAS  Google Scholar 

  37. J. P. Perdew, Phys. Rev. B: Condens. Matter Mater. Phys., 33, 8822 (1986).

    Article  CAS  Google Scholar 

  38. C. Sosa, J. Andzelm, B. C. Elkin, E. Wimmer, K. D. Dobbs and D. A. Dixon, J. Phys. Chem., 96, 6630 (1992).

    Article  CAS  Google Scholar 

  39. A. Schäfer, H. Horn and R. Ahlrichs, Chem. Phys., 97, 2571 (1992).

    Google Scholar 

  40. A. Bharti, D. Kundu, D Rabari and T. Banerjee, Phase equilibria in ionic liquid facilitated liquid-liquid extractions, CRC Press, New York (2017).

    Book  Google Scholar 

  41. D. Kundu, B. Banerjee, G. Pugazhenthi and T. Banerjee, Int. J. Hydrogen Energy, 42, 2756 (2017).

    Article  CAS  Google Scholar 

  42. D. Kundu, S. Chakma, G. Pugazhenthi and T. Banerjee, ACS Omega, 3, 2273 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. A. C. Stowe, W. J. Shaw, J. C. Linehan, B. Schmid and T. Autrey, Phys. Chem. Chem. Phys., 9, 1831 (2007).

    Article  CAS  PubMed  Google Scholar 

  44. N. C. Smythe and J. C. Gordon, Eur. J. Inorg. Chem., 2010, 509 (2010).

    Article  CAS  Google Scholar 

  45. S. Sahler, S. Sturm, M. T. Kessler and M. H. G. Prechtl, Chem. Eur. J., 20, 8934 (2014).

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tamal Banerjee.

Electronic supplementary material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kundu, D., Chakma, S., Pugazhenthi, G. et al. Reactive insights into the hydrogen production from ammonia borane facilitated by phosphonium based ionic liquid. Korean J. Chem. Eng. 36, 456–467 (2019). https://doi.org/10.1007/s11814-018-0196-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-018-0196-4

Keywords

  • Ammonia Borane
  • Phosphonium Ionic Liquid
  • Boron NMR
  • COSMO-SAC