Skip to main content
Log in

Impact of pressure on the carbon structure of char during pyrolysis of bituminous coal in pressurized entrained-flow reactor

  • Energy
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

The impact of pressure on the carbon structure of a Chinese bituminous coal was investigated using a pressurized entrained-flow reactor in the temperature and pressure ranges of 700-900 °C and 0.1-4.0MPa, respectively. Pyrolysis pressure had a significant influence on the physiochemical and carbon structure of chars. The specific surface area and the swelling ratio of chars reached their highest values at 1.0MPa. Fourier transform infrared spectroscopy (FTIR) analysis showed that higher pressures enhanced the decomposition of functional groups in chars. Raman spectroscopy analysis results revealed that at elevated pressures, the organic matrix and functional groups were removed from the char structure, leading to higher ordering of the carbon structure. During X-ray diffraction (XRD) analysis, parameters such as the stacking height (Lc), interlayer spacing (d002) and lateral size of the graphite structures (La) were used to evaluate the graphitic structures in chars. The results showed an increase in Lc, La, and the average number of graphene sheets with pyrolysis pressure, indicating a more ordered carbon structure at elevated pressures. The d-spacing of char was in the range of 3.34-3.37 Å, similar to typical graphitic structures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. Das, H. Chauhan, S. Deka, S. Chaudhary, R. Boruah and B. K. Saikia, Micropor. Mesopor. Mater., 253, 80 (2017).

    Article  CAS  Google Scholar 

  2. R. Ye, Z. Peng, A. Metzger, J. Lin, J. A. Mann, K. Huang, C. Xiang, X. Fan, E. L. G. Samuel, L. B. Alemany, A. A. Martí and J. M. Tour, ACS Appl. Mater. Interf., 7, 7041 (2015).

    Article  CAS  Google Scholar 

  3. K. Moothi, S. E. Iyuke, M. Meyyappan and R. Falcon, Carbon, 50, 2679 (2012).

    Article  CAS  Google Scholar 

  4. Q. Zhou, Z. Zhao, Y. Zhang, B. Meng, A. Zhou and J. Qiu, Energy Fuels, 26, 5186 (2012).

    Article  CAS  Google Scholar 

  5. R. Ye, C. Xiang, J. Lin, Z. Peng, K. Huang, Z. Yan, N. P. Cook, E. L. G. Samuel, C.-C. Hwang, G. Ruan, G. Ceriotti, A.-R. O. Raji, A. A. Martí and J. M. Tour, Nature Commun., 4, 2943 (2013).

    Article  CAS  Google Scholar 

  6. T. Liu, R. Luo, W. Qiao, S.-H. Yoon and I. Mochida, Electrochim. Acta, 55, 1696 (2010).

    Article  CAS  Google Scholar 

  7. A. J. Smith, M. J. MacDonald, L. D. Ellis, M. N. Obrovac and J. R. Dahn, Carbon, 50, 3717 (2012).

    Article  CAS  Google Scholar 

  8. A. C. Rady, S. Giddey, A. Kulkarni, S. P. S. Badwal and S. Bhattacharya, Electrochim. Acta, 178, 721 (2015).

    Article  CAS  Google Scholar 

  9. A. C. Rady, S. Giddey, A. Kulkarni, S. P. S. Badwal, S. Bhattacharya and B. P. Ladewig, Appl. Energy, 120, 56 (2014).

    Article  CAS  Google Scholar 

  10. J. McDonald-Wharry, M. Manley-Harris and K. Pickering, Carbon, 59, 383 (2013).

    Article  CAS  Google Scholar 

  11. D. J. Harris, D. G. Roberts and D. G. Henderson, Fuel, 85, 134 (2006).

    Article  CAS  Google Scholar 

  12. D. Zeng and T. H. Fletcher, Energy Fuels, 19, 1828 (2005).

    Article  CAS  Google Scholar 

  13. T. P. Griffin, J. B. Howard and W. A. Peters, Fuel, 73, 591 (1994).

    Article  CAS  Google Scholar 

  14. H. Y. Cai, A. J. Güell, I. N. Chatzakis, J. Y. Lim, D. R. Dugwell and R. Kandiyoti, Fuel, 75, 15 (1996).

    Article  CAS  Google Scholar 

  15. N. Howaniec, Fuel, 172, 118 (2016).

    Article  CAS  Google Scholar 

  16. V. Seebauer, J. Petek and G. Staudinger, Fuel, 76, 1277 (1997).

    Article  CAS  Google Scholar 

  17. C. L. Sun, Y. Q. Xiong, Q. X. Liu and M. Y. Zhang, Fuel, 76, 639 (1997).

    Article  CAS  Google Scholar 

  18. Y. Yun and G.-B. Lee, Korean J. Chem. Eng., 16, 798 (1999).

    Article  CAS  Google Scholar 

  19. F. Jiménez, F. Mondragón and D. López, J. Anal. Appl. Pyrol., 95, 164 (2012).

    Article  CAS  Google Scholar 

  20. C. W. Lee, A. W. Scaroni and R. G. Jenkins, Fuel, 70, 957 (1991).

    Article  CAS  Google Scholar 

  21. H. Wu, G. Bryant, K. Benfell and T. Wall, Energy Fuels, 14, 282 (2000).

    Article  CAS  Google Scholar 

  22. J. Yu, D. Harris, J. Lucas, D. Roberts, H. Wu and T. Wall, Energy Fuels, 18, 1346 (2004).

    Article  CAS  Google Scholar 

  23. D. Zeng, M. Clark, T. Gunderson, W. C. Hecker and T. H. Fletcher, Proc. Combust. Inst., 30, 2213 (2005).

    Article  CAS  Google Scholar 

  24. A. Tremel, T. Haselsteiner, M. Nakonz and H. Spliethoff, Energy, 45, 176 (2012).

    Article  CAS  Google Scholar 

  25. D. G. Roberts, D. J. Harris and T. F. Wall, Energy Fuels, 17, 887 (2003).

    Article  CAS  Google Scholar 

  26. X. Gong and S. Zhang, J. Anal. Appl. Pyrol., 127, 170 (2017).

    Article  CAS  Google Scholar 

  27. V. P. Chabalala, N. Wagner and S. Potgieter-Vermaak, Fuel Process. Technol., 92, 750 (2011).

    Article  CAS  Google Scholar 

  28. A. Zaida, E. Bar-Ziv, L. R. Radovic and Y.-J. Lee, Proc. Combust. Inst., 31, 1881 (2007).

    Article  CAS  Google Scholar 

  29. C. Sheng, Fuel, 86, 2316 (2007).

    Article  CAS  Google Scholar 

  30. J. Xiao, F. Li, Q. Zhong, J. Huang, B. Wang and Y. Zhang, J. Anal. Appl. Pyrol., 117, 64 (2016).

    Article  CAS  Google Scholar 

  31. Z. Wu, S. Wang, J. Zhao, L. Chen and H. Meng, Fuel, 171, 65 (2016).

    Article  CAS  Google Scholar 

  32. S. Li, X. Chen, A. Liu, L. Wang and G. Yu, Bioresour. Technol., 179, 414 (2015).

    Article  CAS  PubMed  Google Scholar 

  33. S. Li, X. Chen, A. Liu, L. Wang and G. Yu, Bioresour. Technol., 155, 252 (2014).

    Article  CAS  PubMed  Google Scholar 

  34. A. Haider and O. Levenspiel, Powder Technol., 58, 63 (1989).

    Article  CAS  Google Scholar 

  35. D. Reichel, S. Siegl, C. Neubert and S. Krzack, Fuel, 158, 983 (2015).

    Article  CAS  Google Scholar 

  36. S. Niksa, Combust. Flame, 100, 384 (1995).

    Article  CAS  Google Scholar 

  37. J. Tomeczek and S. Gil, Fuel, 82, 285 (2003).

    Article  CAS  Google Scholar 

  38. K. Maliutina, A. Tahmasebi and J. Yu, Bioresour. Technol., 256, 160 (2018).

    Article  CAS  PubMed  Google Scholar 

  39. H. Y. Park and D. H. Ahn, Korean J. Chem. Eng., 24, 24 (2007).

    Article  CAS  Google Scholar 

  40. M. V. Gil, J. Riaza, L. Álvarez, C. Pevida, J. J. Pis and F. Rubiera, Appl. Energy, 91, 67 (2012).

    Article  CAS  Google Scholar 

  41. J. L. Yu, V. Strezov, J. Lucas, G. S. Liu and T. Wall, Proc. Combust. Inst., 29, 467 (2002).

    Article  CAS  Google Scholar 

  42. D. R. Jenkins and M. R. Mahoney, Fuel, 153, 585 (2015).

    Article  CAS  Google Scholar 

  43. J. Yu, J. A. Lucas and T. F. Wall, Prog. Energy Combust. Sci., 33, 135 (2007).

    Article  CAS  Google Scholar 

  44. V. Strezov, J. A. Lucas and T. F. Wall, Fuel, 84, 1238 (2005).

    Article  CAS  Google Scholar 

  45. C. Li, J. Zhao, Y. Fang and Y. Wang, Energy Fuels, 23, 5099 (2009).

    Article  CAS  Google Scholar 

  46. F. Meng, J. Yu, A. Tahmasebi, Y. Han, H. Zhao, J. Lucas and T. Wall, Energy Fuels, 28, 275 (2014).

    Article  CAS  Google Scholar 

  47. T. Yuan, A. Tahmasebi and J. Yu, Bioresour. Technol., 175, 333 (2015).

    Article  CAS  PubMed  Google Scholar 

  48. X. Zhu and C. Sheng, Fuel Process. Technol., 91, 837 (2010).

    Article  CAS  Google Scholar 

  49. O. Beyssac, B. Goffé, J.-P. Petitet, E. Froigneux, M. Moreau and J.-N. Rouzaud, Spectrochim. Acta A, 59, 2267 (2003).

    Article  CAS  Google Scholar 

  50. Y. Yin, J. Zhang and C. Sheng, Korean J. Chem. Eng., 26, 895 (2009).

    Article  CAS  Google Scholar 

  51. A. Sadezky, H. Muckenhuber, H. Grothe, R. Niessner and U. Pöschl, Carbon, 43, 1731 (2005).

    Article  CAS  Google Scholar 

  52. C.-Z. Li, Fuel, 86, 1664 (2007).

    Article  CAS  Google Scholar 

  53. F. Tuinstra and J. L. Koenig, J. Chem. Phys., 53, 1126 (1970).

    Article  CAS  Google Scholar 

  54. Y. Bai, Y. Wang, S. Zhu, F. Li and K. Xie, Energy, 74, 464 (2014).

    Article  CAS  Google Scholar 

  55. X. Li, J.-i. Hayashi and C.-Z. Li, Fuel, 85, 1700 (2006).

    Article  CAS  Google Scholar 

  56. D. K. Singh, P. K. Iyer and P. K. Giri, Diam. Relat. Mater., 19, 1281 (2010).

    Article  CAS  Google Scholar 

  57. B. Sakintuna, Y. Yürüm and S. Çetinkaya, Energy Fuels, 18, 883 (2004).

    Article  CAS  Google Scholar 

  58. K. Gurudatt and V. S. Tripathi, Carbon, 36, 1371 (1998).

    Article  CAS  Google Scholar 

  59. B. Feng, S. K. Bhatia and J. C. Barry, Carbon, 40, 481 (2002).

    Article  CAS  Google Scholar 

  60. H. Fujimoto and M. Shiraishi, Carbon, 39, 1753 (2001).

    Article  CAS  Google Scholar 

  61. T. Kim, J. Lee and K.-H. Lee, RSC Adv., 6, 24667 (2016).

    Article  CAS  Google Scholar 

  62. K. S. Yang, Y. J. Yoon, M. S. Lee, W. J. Lee and J. H. Kim, Carbon, 40, 897 (2002).

    Article  CAS  Google Scholar 

  63. Y. Yang, Q. Lin, Y. Huang and D. Guo, J. Anal. Appl. Pyrol., 91, 310 (2011).

    Article  CAS  Google Scholar 

  64. R. Moriyama, H. Kumagai, J. i. Hayashi, C. Yamaguchi, J. Mondori, H. Matsui and T. Chiba, Carbon, 38, 749 (2000).

    Article  CAS  Google Scholar 

  65. Y. Huang, W.-y. Li, G.-s. Wu, J. Feng and Q. Yi, Energy Fuels, 31, 12977 (2017).

    Article  CAS  Google Scholar 

  66. T. Hosseini, A. De Girolamo and L. Zhang, Energy Fuels, 32, 3211 (2018).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianglong Yu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tahmasebi, A., Maliutina, K. & Yu, J. Impact of pressure on the carbon structure of char during pyrolysis of bituminous coal in pressurized entrained-flow reactor. Korean J. Chem. Eng. 36, 393–403 (2019). https://doi.org/10.1007/s11814-018-0187-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-018-0187-5

Keywords

Navigation