Skip to main content
Log in

Characteristics of NiO films prepared by atomic layer deposition using bis(ethylcyclopentadienyl)-Ni and O2 plasma

  • Materials (Organic, Inorganic, Electronic, Thin Films)
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

Plasma-enhanced atomic layer deposition (PEALD) is well-known for fabricating conformal and uniform films with a well-controlled thickness at the atomic level over any type of supporting substrate. We prepared nickel oxide (NiO) thin films via PEALD using bis(ethylcyclopentadienyl)-nickel (Ni(EtCp)2) and O2 plasma. To optimize the PEALD process, the effects of parameters such as the precursor pulsing time, purging time, O2 plasma exposure time, and power were examined. The optimal PEALD process has a wide deposition-temperature range of 100–325 °C and a growth rate of 0.037±0.002 nm per cycle. The NiO films deposited on a silicon substrate with a high aspect ratio exhibited excellent conformality and high linearity with respect to the number of PEALD cycles, without nucleation delay.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Rai, J. W. Yoon, H. M. Jeong, S. J. Hwang, C. H. Kwak and J. H. Lee, Nanoscale, 6, 8292 (2014).

    Article  CAS  PubMed  Google Scholar 

  2. J. Wang, L. Wei, L. Zhang, J. Zhang, H. Wei, C. Jiang and Y. Zhang, J. Mater. Chem., 22, 20038 (2012).

    Article  CAS  Google Scholar 

  3. R. Betancur, M. Maymo, X. Elias, L. T. Vuong and J. Martorell, Solar Energy Mater. Solar Cells, 95, 735 (2011).

    Article  CAS  Google Scholar 

  4. A. A. Al-Ghamdi, W. E. Mahmoud, S. J. Yaghmour and F. M. Al-Marzouki, J. Alloys Compd., 486, 9 (2009).

    Article  CAS  Google Scholar 

  5. Z. Zhu, Y. Bai, T. Zhang, Z. Liu, X. Long, Z. Wei, Z. Wang, L. Zhang, J. Wang, F. Yan and S. Yang, Angew. Chem., 126, 12779 (2014).

    Article  Google Scholar 

  6. K. O. Ukoba, A. C. Eloka-Eboka and F. L. Inambao, Renew. Sust. Energy Rev., 82, 2900 (2018).

    Article  CAS  Google Scholar 

  7. J. H. Kim, H. M. Lee, D. W. Kang, K. M. Lee and C. K. Kim, Korean J. Chem. Eng., 33, 9, 2711 (2016).

    Article  CAS  Google Scholar 

  8. D. Barreca and C. Massignan, Chem. Mater., 13(2), 588 (2001).

    Article  CAS  Google Scholar 

  9. P. Yang, X. Tong, G. Wang, Z. Gao, X. Guo and Y. Qin, ACS Appl. Mater. Interfaces, 7, 4772 (2015).

    Article  CAS  PubMed  Google Scholar 

  10. G. Wang, X. Peng, L. Yu, G. Wan, S. Lin and Y. Qin, J. Mater. Chem. A, 3, 2734 (2015).

    Article  CAS  Google Scholar 

  11. D. H. Kim, Y. J. Kim, Y. S. Song, B. T. Lee, J. H. Kim, S. Suh and R. Gordon, J. Electrochem. Soc., 150(10), C740 (2003).

    Google Scholar 

  12. T. S. Yang, W. Cho, M. Kim, K. S. An, T. M. Chung, C. G. Kim and Y. Kim, J. Vac. Sci. Technol., A, 23(4), 1238 (2005).

    Article  CAS  Google Scholar 

  13. E. Lindahl, M. Ottosson and J. O. Carlsson, Chem. Vap. Deposition, 15, 186 (2009).

    Article  CAS  Google Scholar 

  14. L. Yu, G. Wang, G. Wan, G. Wang, S. Lin, X. Li, K. Wang, Z. Bai and Y. Xiang, Dalton Trans., 45, 13779 (2016).

    Article  CAS  PubMed  Google Scholar 

  15. G. Wang, X. Peng, L. Yu, G. Wan, S. Lin and Y. Qin, J. Mater. Chem. A, 3, 2734 (2015).

    Article  CAS  Google Scholar 

  16. H. L. Lu, G. Scarel, C. Wiemer, M. Perego, S. Spiga, M. Fanciulli and G. Pavia, J. Electrochem. Soc., 155(10), H807 (2008).

    Google Scholar 

  17. H. L. Lu, G. Scarel, X. L. Li and M. Fanciulli, J. Cryst. Growth, 310, 5464 (2008).

    Article  CAS  Google Scholar 

  18. M. K. S. Barr, L. Assaud, Y. Wu, C. Laffon, P. Parent, J, Bachmann and L. Santinacci, Electrochim. Acta, 179, 504 (2015).

    Article  CAS  Google Scholar 

  19. P. Motamedi, K. Bosnick, K. Cui, K. Cadien and J. D. Hogan, ACS Appl. Mater. Interfaces, 9, 24722 (2017).

    Article  CAS  PubMed  Google Scholar 

  20. Y. W. Kim and D. H. Kim, Korean J. Chem. Eng., 29(7), 969 (2012).

    Article  CAS  Google Scholar 

  21. A. G. Hufnagel, A. K. Henß, R. Hoffmann, O. E. O. Zeman, S. Häringer, D. F. Rohlfing and T. Bein, Adv. Mater. Interfaces, 5, 1701531 (2018).

    Article  CAS  Google Scholar 

  22. D. Malwala and P. Gopinath, Environ. Sci.: Nano, 2, 78 (2015).

    Google Scholar 

  23. R. K. Ramachandran, J. Dendooven and C. Detavernier, J. Mater. Chem. A, 2, 10662 (2014).

    Article  CAS  Google Scholar 

  24. J. H. Lee and J. H. Moon, Korean J. Chem. Eng., 34(12), 3195 (2017).

    Article  CAS  Google Scholar 

  25. N. R. Chodankar, S. H. Ji and D. H. Kim, J. Taiwan Inst. Chem. Eng., 80, 503 (2017).

    Article  CAS  Google Scholar 

  26. M. Zafar, J. Y. Yun and D. H. Kim, Korean J. Chem. Eng., 35(2), 567 (2018).

    Article  CAS  Google Scholar 

  27. X. Chen, E. Pomerantseva, P. Banerjee, K. Gregorczyk, R. Ghodssi and G. Rubloff, Chem. Mater., 24, 1255 (2012).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Do-Heyoung Kim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ji, SH., Jang, WS., Son, JW. et al. Characteristics of NiO films prepared by atomic layer deposition using bis(ethylcyclopentadienyl)-Ni and O2 plasma. Korean J. Chem. Eng. 35, 2474–2479 (2018). https://doi.org/10.1007/s11814-018-0179-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-018-0179-5

Keywords

Navigation