Skip to main content
Log in

Simulation analysis on the separation characteristics and motion behavior of particles in a hydrocyclone

  • Transport Phenomena
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

We evaluated the effect of particle size and associated dynamics on a hydrocyclone separation process in order to understand the movement of the particle trajectories inside the hydrocyclone via numerical analysis, with particles of acid hydrolysis residues discharged in TiO2 production via the sulfate method as a case study. The values obtained from the numerical simulation were successfully compared with those from experimental tests in the literature, allowing a description of the dynamics of the particles, their acting forces, and their relevant properties together with separation efficiency. The results showed that particle motion is jointly controlled by the drag force, the pressure gradient force and the centrifugal force. With increasing particle size, the influence of the drag force is weakened, whereas that of the centrifugal force and pressure gradient is strengthened. Factors including particle density, slurry viscosity, and inlet slurry flow rate also contribute to a clear and useful understanding of particle motion behavior in the hydrocyclone as a method for improving the separation efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Belardi, L. Piga, S. Quaresima and N. Shehu, Int. J. Miner. Process., 53, 145 (1998).

    Article  CAS  Google Scholar 

  2. L. Svarovsky, Hydrocyclones[M], Holt, Rinehart and Winston, London (1984).

    Google Scholar 

  3. L.R. Plitt, CIM Bull., 69, 114 (1976).

    Google Scholar 

  4. B. Wang and A. B. Yu, |AIChE J., 56, 1703 (2010).

    CAS  Google Scholar 

  5. B. Wang and A. B. Yu, Miner. Eng., 19, 1022 (2006).

    Article  CAS  Google Scholar 

  6. H. Yoshida, T. Takashina, K. Fukui and T. Iwanaga, Powder Technol., 140, 1 (2004).

    Article  CAS  Google Scholar 

  7. S. Noroozi and S. H. Hashemabadi, Chem. Eng. Technol., 32, 1885 (2009).

    Article  CAS  Google Scholar 

  8. L. G. M. Vieira, D.O. Silva and M. A. S. Barrozo, Chem. Eng. Technol., 39, 1406 (2016).

    Article  CAS  Google Scholar 

  9. B. Tang, Y. Xu, X. Song, Z. Sun and J. Yu, Trans. Nonferrous Met. Soc. China, 27, 1645 (2017).

    Article  Google Scholar 

  10. L.G.M. Vieira and M.A. S. Barrozo, Miner. Eng., 57, 50 (2014).

    Article  CAS  Google Scholar 

  11. B. Tang, Y. Xu, X. Song, Z. Sun and J. Yu, Chem. Eng. J., 278, 504 (2015).

    Article  CAS  Google Scholar 

  12. I. Mokni, H. Dhaouadi, P. Bournot and H. Mhiri, Chem. Eng. Sci., 122, 500 (2015).

    Article  CAS  Google Scholar 

  13. F. S. Kilavuz and Ö.Y. Gülsoy, Int. J. Mineral. Process, 98, 163 (2011).

    Article  CAS  Google Scholar 

  14. N.K.G. Silva, D.O. Silva, L.G.M. Vieira and M.A. S. Barrozo, Powder Technol., 286, 305 (2015).

    Article  CAS  Google Scholar 

  15. M. Ghodrat, S. B. Kuang, A. B. Yu, A. Vince, G.D. Barnett and P. J. Barnett, Miner. Eng., 62, 74 (2014).

    Article  CAS  Google Scholar 

  16. B. Wang and A. B. Yu, Chem. Eng. J., 135, 33 (2008).

    Article  CAS  Google Scholar 

  17. L.G.M. Vieira, J. J.R. Damasceno and M.A. S. Barrozo, Chem. Eng. Process, 49, 460 (2010).

    Article  CAS  Google Scholar 

  18. L. Chu, W. Chen and X. Lee, Chem. Eng. Sci., 57, 207 (2002).

    Article  CAS  Google Scholar 

  19. Z. Bai, H. Wang and S. Tu, Petrol. Sci. Technol., 28, 525 (2010).

    Article  CAS  Google Scholar 

  20. K. Hwang, W. Wu, S. Qian and Y. Nagase, Sep. Sci. Technol., 15, 3777 (2008).

    Article  CAS  Google Scholar 

  21. K. Hwang, Y. Hwang, H, Yoshida and K. Shigemori, Powder Technol., 232, 41 (2012).

    Article  CAS  Google Scholar 

  22. L. Zhao, M. Jiang, B. Xu and B. Zhu, Chem. Eng. Res. Des., 90, 2129 (2012).

    Article  CAS  Google Scholar 

  23. P. Fu, F. Wang, X. Yang, L. Ma, X. Cui and H. Wang, Sci. Technol., 51, 1587 (2017).

    Article  CAS  Google Scholar 

  24. P. Liu, L. Chu, J. Wang and Y. Yu, Chem. Eng. Technol., 31, 474 (2008).

    Article  CAS  Google Scholar 

  25. R. Cui, G. Wang and M. Li, Trans. Noferrous Met. Soc. China, 25, 2422 (2015).

    Article  Google Scholar 

  26. B. Cui, D. Wei, S. Gao, W, Liu and Y. Feng, Trans. Noferrous Met. Soc. China, 24, 2642 (2014).

    Article  Google Scholar 

  27. Z. Wang, L. Chu, W. Chen and S. Wang, Chem. Eng. J., 138, 1 (2008).

    Article  CAS  Google Scholar 

  28. Y. Chang, C. G. Ilea, Ø. L. Aasen and A. C. Hoffmann, Chem. Eng. Sci., 66, 4203 (2011).

    Article  CAS  Google Scholar 

  29. K.A. Nageswararao, Chem. Eng. J., 80, 251 (2000).

    Article  CAS  Google Scholar 

  30. D.D. Patil and T. C. Rao, Miner. Metall. Process, 18, 4 (2001).

    Google Scholar 

  31. K. Hwang, W. Hsueh and Y. Nagase, Dry Technol., 26, 1002 (2008).

    Article  CAS  Google Scholar 

  32. P. Kozolub, A. Klimanek, R.A. Bialecki and W. P. Adamczyk, Particuology, 31, 170 (2016).

    Article  CAS  Google Scholar 

  33. W. P. Adamczyk, K. Myöhänen, E-U Hartge, J. Ritvanen, A. Klimanek, T. Hyppänen and R. A. Bialecki, Energy, 143, 219 (2018).

    Article  Google Scholar 

  34. Y. Xu, X. Song, B. Tang, P. Li and J. Yu, Ind. Eng. Chem. Res., 52, 5470 (2013).

    Article  CAS  Google Scholar 

  35. S.A. Morsi and A. J. Alexander, J. Fluid Mech., 55, 193 (1972).

    Article  Google Scholar 

  36. K.T. Hsieh, Phenomenological Model of the Hydrocyclone[D]. Ph.D. Thesis, The University of Utah, Salt Lake City, UT, U.S.A. (1988).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xingfu Song.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, Y., Tang, B., Song, X. et al. Simulation analysis on the separation characteristics and motion behavior of particles in a hydrocyclone. Korean J. Chem. Eng. 35, 2355–2364 (2018). https://doi.org/10.1007/s11814-018-0171-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-018-0171-0

Keywords

Navigation