Skip to main content
Log in

Investigation of the cell disruption methods for maximizing the extraction of arginase from mutant Bacillus licheniformis (M09) using statistical approach

  • Biotechnology
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

Arginase, an intracellular enzyme produced by Bacillus licheniformis (NRS-1264) is effectively used as a drug in the treatment of arginine-dependent cancers, and it is essential for controlling acute neurological disorders. We investigated the effect of various cell disruption methods for maximizing the extraction of intracellular arginase from mutant Bacillus licheniformis (M09), followed by comparing optimization methods, one factor at a time (OFAT), evolutionary operation (EVOP) and response surface method (RSM). Ultrasonication for 2-5 min having a suspension volume in the range of 12-20 mL at a radio frequency power between 30–70 W appeared to be the most effective extraction technique for arginase. The arginase yield decreased in the range of 50–70 W of RF power/16-20 mL suspension volume and 4-5 min sonication time. EVOP predicted a maximum arginase extraction of 3,910 IU·L-1 at 2 min sonication having 16 mL suspension volume at 30W RF power. However, response surface optimization suggested an optimized condition of 3 min sonication having 14.5 mL suspension volume at 35W RF power in which the maximum arginase activity in the medium was 3,600 IU·L-1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. C. Bewley, J. S. Lott, E. N. Baker and M. L. Patchett, FEBS Lett., 386, 215 (1996).

    Article  CAS  PubMed  Google Scholar 

  2. P. M. Cheng, T. L. Lam, W. M. Lam, S. M. Tsui, A. W. Cheng, W. H. Lo and Y. C. Leung, Cancer Res., 67, 309 (2007).

    Article  CAS  PubMed  Google Scholar 

  3. L. Feun and N. Savaraj, Expert. Opin. Investig. Drugs, 15, 815 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. C. P. Jenkinson, W. W. Grody and S. D. Cederbaum, Comp. Biochem. Physiol. B. Biochem. Mol. Biol., 114, 107 (1996).

    Article  CAS  PubMed  Google Scholar 

  5. O. W. Prozesky, W. O. K. Grabow, V. D. Merwe and J. N. Coetzee, J. Gen. Microbiol., 77, 237 (1973).

    Article  CAS  PubMed  Google Scholar 

  6. E. A. Zeller, Van Orden and W. F. Kirchheimer, J. Bacteriol., 67, 153 (1954).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. M. Green and P. Mcphieii, J. Biol. Chem., 265, 1601 (1989).

    Google Scholar 

  8. K. A. Borkovich and R. L. Weiss, J. Biol. Chem., 262, 7081 (1987).

    CAS  PubMed  Google Scholar 

  9. H. Kim and K. H. Kim, Yonsei Med. J., 37, 405 (1996).

    Article  CAS  PubMed  Google Scholar 

  10. Y. K. Chang and L. Chu, Biochem. Eng. J., 35, 37 (2007).

    Article  CAS  Google Scholar 

  11. J. R. Kar and R. S. Singhal, Biotechnol. Rep., 5, 89 (2015).

    Article  Google Scholar 

  12. F. J. Barba, N. Grimi and E. Vorobiev, Food Eng. Rev., 7, 45 (2015).

    Article  CAS  Google Scholar 

  13. Y. Chisti and M. Moo-Young, Enzyme Microb. Technol., 8, 194 (1986).

    Article  CAS  Google Scholar 

  14. S. P. Cuellar-Bermudez, I. Aguilar-Hernandez, D. L. Cardenas-Chavez, M. A. Romero-Ogawa and R. Parra-Saldivar, Microb. Biotechnol., 8, 190 (2015).

    Article  CAS  PubMed  Google Scholar 

  15. E. Roselló-Soto, O. Parniakov and F. J. Barba, Food Eng. Rev., 8, 214 (2016).

    Article  CAS  Google Scholar 

  16. M. Puri, S. Gupta and P. Pahuja, Appl. Biochem. Biotechnol., 160, 98 (2010).

    Article  CAS  PubMed  Google Scholar 

  17. C. Joshi and R. S. Singhal, Korean J. Chem. Eng., 35, 195 (2018).

    Article  CAS  Google Scholar 

  18. F. J. Barba, Z. Zhu and V. Orlien, Trends Food Sci. Technol., 49, 96 (2016).

    Article  CAS  Google Scholar 

  19. R. Banerjee and B. C. Bhattacharyya, Biotechnol. Bioeng., 41, 67 (1993).

    Article  CAS  PubMed  Google Scholar 

  20. S. Dagbagli and Y. Goksungur, Electron. J. Biotechnol., 11, 11 (2008).

    Article  CAS  Google Scholar 

  21. Y. Liu, G. Gong and S. Wu, Carbohydr. Polym., 110, 278 (2014).

    Article  CAS  PubMed  Google Scholar 

  22. C. Joshi and R. S. Singhal, Biocat. Agri. Biotech., 8, 228 (2016).

    Google Scholar 

  23. C. J. Andersen and B. Strange, Scand. J. Clin. Lab. Investig., 11, 122 (1959).

    Article  Google Scholar 

  24. T. Asakura, K. Adachi and E. Schwartz, J. Biol. Chem., 253, 6423 (1978).

    CAS  PubMed  Google Scholar 

  25. A. D. Dange and V. B. Masurekar, J. Biosci., 3, 129 (1981).

    Article  CAS  Google Scholar 

  26. G. Mukherjee and R. Banerjee, Appl. Biochem. Biotechnol., 118, 33 (2004).

    Article  CAS  PubMed  Google Scholar 

  27. A. P. J. Middelberg, Biotechnol. Adv., 13, 491 (1995).

    Article  CAS  PubMed  Google Scholar 

  28. R. S. Singhal and S. S. Jayakar, Glob. J. Biotechnol. Biochem., 7, 90 (2012).

    Google Scholar 

  29. S. T. Harrison, Biotechnol. Adv., 9, 217 (1991).

    Article  CAS  PubMed  Google Scholar 

  30. S. N. S. Anis, M. I. Nurhezreen and A. A. Amirul, Appl. Biochem. Biotechnol., 167, 524 (2012).

    Article  CAS  PubMed  Google Scholar 

  31. A. Helenius and K. Simons, Biochim. Biophys. Acta, 415, 29 (1975).

    Article  CAS  PubMed  Google Scholar 

  32. D. Galabova, B. Tuleva and D. Spasova, Enzyme Microb. Technol., 18, 18 (1996).

    Article  CAS  Google Scholar 

  33. S. T. Harrison, H. A. Chase and J. S. Dennis, Biotechnol. Technol., 5, 115 (1991).

    Article  CAS  Google Scholar 

  34. F. Zhao and J. Yu, Biotechnol. Prog., 17, 490 (2001).

    Article  CAS  PubMed  Google Scholar 

  35. R. W. Lovitt, M. Jones, S. E. Collins, G. M. Coss, C. P. Yau and C. Attouch, Process Biochem., 36, 415 (2000).

    Article  CAS  Google Scholar 

  36. L. B. Feril and T. Kondo, Ultrason. Sonochem., 12, 353 (2005).

    Article  CAS  PubMed  Google Scholar 

  37. K. J. Lee and K. H. Row, Korean J. Chem. Eng., 23, 779 (2006).

    Article  CAS  Google Scholar 

  38. P. R. Gogate and A. M. Kabadi, Biochem. Eng. J., 44, 60 (2009).

    Article  CAS  Google Scholar 

  39. C. W. Ho, T. K. Chew, T. C. Ling, S. Kamaruddin, W. S. Tan and B. T. Tey, Process Biochem., 41, 1829 (2006).

    Article  CAS  Google Scholar 

  40. J. X. Feliu, R. Cubarsi and A. Villaverde, Biotechnol. Bioeng., 58, 536 (1998).

    Article  CAS  PubMed  Google Scholar 

  41. H. S. Choonia and S. S. Lele, Chem. Eng. Comm., 198, 668 (2011).

    Article  CAS  Google Scholar 

  42. H. Kapucu, N. Gülsoy and Ü. Mehmetoĝlu, Biochem. Eng. J., 5, 57 (2000).

    Article  CAS  Google Scholar 

  43. A. Lateef, J. K. Oloke and S. G. Prapulla, Enzyme Microb. Technol., 40, 1067 (2007).

    Article  CAS  Google Scholar 

  44. S. B. Bankar and R. S. Singhal, Bioresour. Technol., 101, 8370 (2010).

    Article  CAS  PubMed  Google Scholar 

  45. C. Ruchir and R. S. Singhal, J. Microbiol. Biotechnol., 20, 950 (2010).

    Article  CAS  Google Scholar 

  46. S. Kumar, N. Katiyar, P. Ingle and S. Negi, Bioresour. Technol., 102, 4909 (2011).

  47. P. Mahapatra and A. Kumari, Indian J. Microbiol., 50, 396 (2010).

    Article  CAS  PubMed  Google Scholar 

  48. L. H. M. Vargas, A. C. S. Pião, R. N. Domingos and E. C. Carmona, World J. Microbiol. Biotechnol., 20, 137 (2004).

    Article  CAS  Google Scholar 

  49. D. K. Apar and B. Özbek, Chem. Biochem. Eng. Q., 22, 113 (2008).

    CAS  Google Scholar 

  50. E. Demirhan and B. Özbek, Chem. Eng. Commun., 196, 767 (2009).

    Article  CAS  Google Scholar 

  51. S. Li, D. Han and K. H. Row, Korean J. Chem. Eng., 29, 650 (2012).

    Article  CAS  Google Scholar 

  52. M. Koubaa, E. Rosello-Soto and F. J. Barba, J. Agric. Food Chem., 63, 6835 (2015).

    Article  CAS  PubMed  Google Scholar 

  53. M. Yaldagard, S. A. Mortazavi and F. Tabatabaie, Korean J. Chem. Eng., 25, 517 (2008).

    Article  CAS  Google Scholar 

  54. N. A. Pchelintsev, P. D. Adams and D. M. Nelson, PLoS One, 11, 1 (2016).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Uday Annapure.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Momin, B., Chakraborty, S. & Annapure, U. Investigation of the cell disruption methods for maximizing the extraction of arginase from mutant Bacillus licheniformis (M09) using statistical approach. Korean J. Chem. Eng. 35, 2024–2035 (2018). https://doi.org/10.1007/s11814-018-0107-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-018-0107-8

Keywords

Navigation