Skip to main content

Advertisement

Log in

Improvement of liquid fuel atomization for an internal engine using an auxiliary device

  • Energy
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

Controlled atomization is essential for reducing soot emission in practical diesel engines. In this work, an auxiliary device called a FAD (fuel activation device) was inserted into the fuel injection line to induce cavitation in the diesel spray. The performance of the FAD was examined in terms of pollutant emissions in a field test as well as aerosol sizes in lab-scale experiments. Experimental results showed that FAD reduced the size distribution of injected droplets and decreased the fuel consumption rate and emission amounts of PM10, CO, and NOx by 42%, 50% and 13.4%, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. Kumar and S. R. Chauhan, J. Renew. Sustain. Energy Rev., 21, 633 (2013).

    Article  CAS  Google Scholar 

  2. J. M. Bergthorson and M. J. Thomson, J. Renew. Sustain. Energy Rev., 42, 1393 (2015).

    Article  CAS  Google Scholar 

  3. N. Yilmaz, Fuel, 94, 444 (2012).

    Article  CAS  Google Scholar 

  4. W. Kim, The Seoul Institute Annual Research Digest 2016, The Seoul Institute, Seoul (2016).

    Google Scholar 

  5. S. Gupta, R. Poola and R. Sekar, SAE Trans., 109, 1713 (2000).

    Google Scholar 

  6. M. Talibi, P. Hellier, R. Balachandran and N. Ladommatos, Int. J. Hydrogen Energy, 39, 15088 (2014).

    Article  CAS  Google Scholar 

  7. J. Heywood, Internal combustion engine fundamentals, McGraw-Hill, New York (1988).

    Google Scholar 

  8. F. Xing, A. Kumar, Y. Huang, S. N. Chan, C. Ruan, S. Gu and X. L. Fan, Appl. Energy, 193, 28 (2017).

    Article  CAS  Google Scholar 

  9. L. P. Bayvel, Liquid atomization, Taylor & Francis, Washington, D.C. (1993).

    Google Scholar 

  10. S. Sharma, R. Kumar, A. Chowdhury, Y. Yoon and S. Kumar, Fuel, 199, 229 (2017).

    Article  CAS  Google Scholar 

  11. W. Bergwerk, Proc. Inst. Mech. Eng., 173, 655 (1959).

    Article  Google Scholar 

  12. J. Benajes, J. V. Pastor, R. Payri and A. H. Plazas, J. Fluids Eng., 126, 63 (2004).

    Article  Google Scholar 

  13. R. Payri, J. M. Garcia, F. J. Salvador and J. Gimeno, Fuel, 84, 551 (2005).

    Article  CAS  Google Scholar 

  14. H. K. Suh, S. W. Park and C. S. Lee, Fuel, 86, 2833 (2008).

    Article  CAS  Google Scholar 

  15. C. E. Brennen, Cavitation and Bubble Dynamics, Oxford University Press, New York (1995).

    Google Scholar 

  16. W. H. Nurick, J. Fluids Eng., 98, 681 (1976).

    Article  CAS  Google Scholar 

  17. A. Sou, M. I. Maulana, K. Isozaki and A. Tomiyama, J. Fluid Sci. Technol., 3, 622 (2008).

    Article  Google Scholar 

  18. N. Tamaki, M. Shimizu, K. Nishida and H. Hiroyasu, Atomization Sprays, 8, 179 (1998).

    Article  CAS  Google Scholar 

  19. C. Soteriou, R. Andrews and M. Smith, SAE Trans., 104, 128 (1995).

    Google Scholar 

  20. S. I. Choi, J. P. Feng, H. S. Seo and Y. M. Jo, J. Korean Soc. Atmos. Environ., 33, 306 (2017).

    Article  Google Scholar 

  21. C. Arcoumanis, H. Flora, M. Gavaises and M. Badami, SAE Trans., 109, 1485 (2000).

    Google Scholar 

  22. G. J. Jiang, Y. S. Zhang, H. Wen and G. Xiao, Energy Convers. Manage., 103, 208 (2015).

    Article  Google Scholar 

  23. Y. Q. Gao, M. R. Wei, F. W. Yan, L. F. Chen, G. Z. Li and L. Y. Feng, Exp. Therm. Fluid Sci., 87, 69 (2017).

    Article  Google Scholar 

  24. Z. X. He, Z. Y. Zhang, G. M. Guo, Q. Wang, X. Y. Leng and S. X. Sun, Int. J. Heat Mass Transf., 78, 13 (2016).

    Article  Google Scholar 

  25. B. Carsten, Mixture Formation in Internal Combustion Engine, Springer Publications, New York and Berlin (2006).

    Google Scholar 

  26. L. L. Moyne, Int. J. Spray Combust., 2, 49 (2010).

    Article  Google Scholar 

  27. F. J. Salvador, S. Ruiz, M. Crialesi-Esposito and I. Blanquer, Int. J. Multiph. Flow, 102, 49 (2018).

    Article  CAS  Google Scholar 

  28. M. Arai, Physics behind diesel sprays and its combustion, LAP Lambert Academic Publishing (2016).

    Google Scholar 

  29. M. Gavaises, A. Andriotis, D. Papoulias, N. Mitroglou and A. Theodorakakos, Phys. Fluids, 21, 052107 (2009).

    Article  CAS  Google Scholar 

  30. Z. X. He, W. J. Zhong, Q. Wang, Z. C. Jiang and Z. Shao, Int. J. Therm. Sci., 70, 132 (2013).

    Article  CAS  Google Scholar 

  31. A. Sou, B. Biçer and A. Tomiyama, Comput. Fluids, 103, 42 (2014).

    Article  Google Scholar 

  32. Z. X. He, X. C. Tao, W. J. Zhong, X. Y. Leng, Q. Wang and P. Zhao, Int. J. Heat Mass Transf., 65, 117 (2015).

    Article  Google Scholar 

  33. B. Bicer and A. Sou, Appl. Math. Model., 40, 4712 (2016).

    Article  Google Scholar 

  34. B. Mohan, W. M. Yang and S. K. Chou, Eng. Appl. Comp. Fluid, 8, 70 (2014).

    Google Scholar 

  35. D. Park, T. Lee, Y. Lee, W. Jeong, S. B. Kwon, D. Kim and K. Lee, Sci. Total Environ., 575, 97 (2017).

    Article  CAS  PubMed  Google Scholar 

  36. B. S. Prabhakar, S. P. Laxmanrao and K. J. A. M. Salim, Int. J. Innov. Res. Sci. Eng. Technol., 2, 6200 (2013).

    Google Scholar 

  37. Z. M. Wang, H. M. Xu, C. Z. Jiang and M. L. Wyszynski, Fuel, 174, 140 (2016).

    Article  CAS  Google Scholar 

  38. H. J. Kim, S. H. Park and C. S. Lee, Fuel Process. Technol., 91, 354 (2010).

    Article  CAS  Google Scholar 

  39. D. L. Jing, F. Zhang, Y. F. Li, H. M. Xu and S. J. Shuai, Fuel, 199, 478 (2017).

    Article  CAS  Google Scholar 

  40. G. B. Li, J. M. Cao, M. L. Li, Y. H. Quan and Z. Y. Chen, Fuel Process. Technol., 104, 352 (2012).

    Article  CAS  Google Scholar 

  41. R. J. Schick, General guidelines on drop size measurement techniques and terminology, 47th Chemical Processing Industry Exposition, New York (1997).

    Google Scholar 

  42. H. Hiroyasu, T. Kadota and M. Arai, Bull. JSME, 26, 569 (1983).

    Article  Google Scholar 

  43. G. M. Hidy, J. Colloid Sci., 20, 123 (1965).

    Article  CAS  Google Scholar 

  44. A. Afshar, Evaluation of liquid fuel spray models for hybrid RANS/lLES and DLES prediction of turbulent reactive flows, University of Toronto, M.S. Thesis (2014).

    Google Scholar 

  45. H. K. Suh, S. H. Park and C. S. Lee, Int. J. Automot. Technol., 9, 217 (2008).

    Article  Google Scholar 

  46. S. Lee and S. Park, Fuel, 137, 50 (2014).

    Article  CAS  Google Scholar 

  47. S. Huang, P. Deng, R. H. Huang, Z. W. Wang, Y. J. Ma and H. Dai, Energy Convers. Manage., 106, 911 (2015).

    Article  CAS  Google Scholar 

  48. H. Hiroyasu, Atomization Sprays, 10, 511 (2000).

    Article  CAS  Google Scholar 

  49. K. K. Hendratna, O. Nishida, H. Fujita, W. Harano and D. H. Yoo, Int. J. Res. Rev. Appl. Sci., 5, 101 (2010).

    CAS  Google Scholar 

  50. İ. A. Reşitoĝlu, K. Altinişik, and A. Keskin, Clean Technol. Environ. Policy, 17, 15 (2015).

    Article  CAS  Google Scholar 

  51. K. Azad, M. Rasul, B. Giannangelo and R. Islam, Int. J. Automot. Mech. Eng., 12, 2866 (2016).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Young Min Jo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Feng, J.P., Choi, S.I., Seo, H.S. et al. Improvement of liquid fuel atomization for an internal engine using an auxiliary device. Korean J. Chem. Eng. 35, 2001–2009 (2018). https://doi.org/10.1007/s11814-018-0106-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-018-0106-9

Keywords

Navigation