Skip to main content
Log in

Correlative and predictive models of viscosity study on Propiophenone with isomeric xylenes binary mixtures at T=(303.15 to 318.15) K

  • Separation Technology, Thermodynamics
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

Densities and viscosities of binary mixtures of Propiophenone with o-xylene, m-xylene and p-xylene were measured over the entire composition range at T=(303.15 to 318.15) K and at 0.1Mpa atmospheric pressure. Experimental data used to calculate excess molar volume (VE), deviation of viscosity (Δη), excess Gibb’s free energy (G*E) activation of viscous flow for each binary system and the results were fitted to the Redlich-Kister polynomial equation to obtain the fitting coefficients and standard deviations. Viscosity values used to compute single adjustable interaction parameters from Grunberg and Nissan, Katti and Chaudhri, Hind et al., Tamara Kurata and Frenkel relations. Deviations in thermodynamic properties of the binary mixtures were discussed in terms of their molecular interactions between the components. Viscosity data correlated with the McAllister’s three body/four body models, Heric, Auslander, and Jouyban-Acree relations having two and three adjustable parameters for the studied binary mixtures. Viscosity relations like Kendall-Monroe, Bingham, Arrhenius, and Kendall were used to calculate and compare the standard deviation percentage, (σ %), between the experimental and calculated viscosity data. The studied systems showed specific intermolecular interactions and the percentage deviations were in good agreement with the experimental values. Obtained results are useful in various chemical and industrial processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. K. Bindhani, G. K. Roy, Y. K. Mohanty and T. R. Kubendran, Russ. J. Phys. Chem. A, 89, 1828 (2015).

    Article  CAS  Google Scholar 

  2. Y. Zhou, J. Wu and E. W. Lemmon, J. Phys. Chem. Ref. Data, 41 (2012), DOI:https://doi.org/10.1063/1.3703506.

  3. J. A. Al-Kandary, A. S. Al-Jimaz and A. H. M. Abdul-Latif, J. Chem. Thermodyn., 38, 1351 (2006).

    Article  CAS  Google Scholar 

  4. S. Singh, B. P. S. Sethi, R. C. Katyal and V. K. Rattan, J. Chem. Eng. Data, 50, 125 (2005).

    Article  CAS  Google Scholar 

  5. G. Moumouzias, C. Ritzoulis and G. Ritzoulis, J. Chem. Eng. Data, 44, 1187 (1999).

    Article  CAS  Google Scholar 

  6. J. A. Al-Kandary, A. S. Al-Jimaz and A. H. M. Abdul-Latif, J. Chem. Eng. Data, 51, 2074 (2006).

    Article  CAS  Google Scholar 

  7. M. Habibullah, K. N. Das, I. M. M. Rahman, M. A. Uddin, K. Saifuddin, K. Iwakabe and H. Hasegawa, J. Chem. Eng. Data, 55, 5370 (2010).

    Article  CAS  Google Scholar 

  8. A. Ali and F. Nabi, Acta Phys. - Chim. Sin., 24, 47 (2008).

    Article  Google Scholar 

  9. S. Gahlyan, S. Verma, M. Rani and S. Maken, Korean J. Chem. Eng., 35, 1167 (2018).

    Article  CAS  Google Scholar 

  10. F. Corradini, G. Franchini, A. Marchetti, M. Tagliazucchi and L. Tassi, Bull. Chem. Soc. Jpn., 68, 1867 (1995).

    Article  CAS  Google Scholar 

  11. Z. Begum, P. B. Sandhya Sri, D. B. Karuna Kumar and C. Rambabu, J. Mol. Liq., 178, 99 (2013).

    Article  CAS  Google Scholar 

  12. S. K. Bindhani, G. K. Roy, Y. K. Mohanty and T. R. Kubendran, Russ. J. Phys. Chem. A., 91, 1037 (2017).

    Article  CAS  Google Scholar 

  13. G. S. Manukonda, P. Venkatalakshami and K. Rambabu, Int. J. Phys. Res., 3, 5 (2013).

    Google Scholar 

  14. P. Jain and M. Singh, J. Chem. Eng. Data, 49, 1214 (2004).

    Article  CAS  Google Scholar 

  15. M. V. Rathnam, S. Mohite and M. S. S. Kumar, J. Solution Chem., 39, 1735 (2010).

    Article  CAS  Google Scholar 

  16. S. Fakruddin, C. Srinivasu, B. R. Venkateswara Rao and K. Narendra, Adv. Phys. Chem., 2012 (2012), DOI:https://doi.org/10.1155/2012/324098.

  17. S. C. Bhatia, R. Rani and R. Bhatia, J. Mol. Liq., 159, 132 (2011).

    Article  CAS  Google Scholar 

  18. A. Krishnaiah and K. N. Surendranath, J. Chem. Eng. Data, 41, 1012 (1996).

    Article  CAS  Google Scholar 

  19. L. Grunberg and A. H. Nissan, Nature, 164, 799 (1949).

    Article  CAS  PubMed  Google Scholar 

  20. P. K. Katti, M. M. Chaudhri and O. M. Prakash, J. Chem. Eng. Data, 11, 593 (1966).

    Article  CAS  Google Scholar 

  21. R. K. Hind, E. McLaughlin and A. R. Ubbelohde, Trans. Faraday Soc., 56, 328 (1960).

    Article  CAS  Google Scholar 

  22. M. Tamura and M. Kurata, Bull. Chem. Soc. Jpn., 25, 32 (1952).

    Article  Google Scholar 

  23. Frenkel Ya., I., Petroleum, 9, 27 (1946).

    Google Scholar 

  24. J. Kendall and K. P. Monroe, J. Am. Chem. Soc., 39, 1787 (1917).

    Article  CAS  Google Scholar 

  25. P. D. Eugene and C. Bingham, Fluidity and Plasticity, Cambridge University Press, Cambridge (1922), DOI:https://doi.org/10.1017/CBO9781107415324.004.

    Google Scholar 

  26. S Arrehenius, Meddelanden Från K. Vetenskapsakademiens Nobelinstitut, Nobel Inst. 2, 25 (1913).

    Google Scholar 

  27. A. K. Nain, R. Sharma, A. Ali and S. Gopal, J. Mol. Liq., 144, 124 (2009).

    Article  CAS  Google Scholar 

  28. A. K. Nain, R. Sharma, A. Ali and S. Gopal, Int. J. Thermophys., 31, 1073 (2010).

    Article  CAS  Google Scholar 

  29. S. Oswal and M. V. Rathnam, Can. J. Chem., 62, 2851 (1984).

    Article  CAS  Google Scholar 

  30. R. J. Fort and W. R. Moore, Trans. Faraday Soc., 62, 1112 (1966).

    Article  CAS  Google Scholar 

  31. L. Pikkarainen, J. Chem. Eng. Data, 28, 381 (1983).

    Article  CAS  Google Scholar 

  32. T. M. Reed and T. E. Taylor, J. Phys. Chem., 63, 58 (1959).

    Article  CAS  Google Scholar 

  33. R. Nigam, Indian J. Chem., 9, 1255 (1971).

    CAS  Google Scholar 

  34. O. Redlich and A. T. Kister, Ind. Eng. Chem., 40, 345 (1948).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dittakavi Ramachandran.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ramachandran, D., Devi, N.G. & Srinivasa Rao, N.V.N.B. Correlative and predictive models of viscosity study on Propiophenone with isomeric xylenes binary mixtures at T=(303.15 to 318.15) K. Korean J. Chem. Eng. 35, 1919–1931 (2018). https://doi.org/10.1007/s11814-018-0104-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-018-0104-y

Keywords

Navigation