Skip to main content
Log in

Modeling and simulation for acrylamide polymerization of super absorbent polymer

  • Process Systems Engineering, Process Safety
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

In view of the scale up of a batch reactor for super absorbent polymer (SAP), a dynamic mathematical model of a commercial scale batch reactor was developed with mass balance, energy balance, and complex polymerization kinetics. The kinetic parameters of the polymerization were estimated on the basis of the established mathematical model and reference data. Simulation results were validated with less than 10% marginal error compared with reference data. A case study was executed in terms of dynamic simulation for eight different initial concentrations of initiator and monomer to analyze the influence of initial concentration and predict the operation condition for desired product. The results were compared with various reference data, and good agreement was achieved. From the results, we argue that the methodology and results from this study can be used for the scale up of a polymerization batch reactor from the early stage of design.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Francis, M. Kumar and L. Varshney, Radiat. Phys. Chem., 69, 481 (2014).

    Article  CAS  Google Scholar 

  2. S. C. Chang, J. S. Yoo, J. W. Woo and J. S. Choi, Korean J. Chem. Eng., 16, 581 (1999).

    Article  CAS  Google Scholar 

  3. R. E. Sojka and J. A. Entry, Environ. Pollut., 108, 405 (2000).

    Article  CAS  PubMed  Google Scholar 

  4. J. Z. Mohammad and K. Kabiri, Iran. Polym. J., 17, 451 (2008).

    Google Scholar 

  5. M. Wisniewska, S. Chibowski and T. Urban, J. Ind. Eng. Chem., 21, 925 (2015).

    Article  CAS  Google Scholar 

  6. G. Sodeifian, R. Daroughegi and J. Aalaie, Korean J. Chem. Eng., 32, 2484 (2015).

    Article  CAS  Google Scholar 

  7. D. Chamovsk, M. Cvetkovska and T. Grchev, Croat. Chem. Acta, 81, 461 (2008).

    Google Scholar 

  8. A. Pourjavadi and G. R. Mahdavinia, Turk. J. Chem., 30, 595 (2006).

    CAS  Google Scholar 

  9. A. A. Oladipo, Synthesis and characterization of modified chitosanbased novel superabsorbent hydrogel: swelling and dye adsorption behavior, Master’s Thesis EMU (2011).

    Google Scholar 

  10. M. Sadeghi and H. Hosseinzadeh, Turk. J. Chem., 32, 375 (2008).

    CAS  Google Scholar 

  11. R. A. Scott and N. A. Peppas, AIChE J., 43, 135 (1996).

    Article  Google Scholar 

  12. T. Ishige and A. E. Hamielec, J. Appl. Polym. Sci., 17, 1479 (1973).

    Article  CAS  Google Scholar 

  13. A. Giz, H. C. Giz, A. Alb, J. L. Brousseau and W. F. Reed, Macromolecules, 34, 1180 (2001).

    Article  CAS  Google Scholar 

  14. D. Hunkeler, Macromolecules, 24, 2160 (1991).

    Article  CAS  Google Scholar 

  15. C. Preusser, A. Chovancova, I. Lacik and R. A. Hutchinson, Macromol. React. Eng., 10, 490 (2016).

    Article  CAS  Google Scholar 

  16. Process Systems Enterprise Co., https://doi.org/www.psenterprise.com (2017).

  17. N. D. Vo, M. Y. Jung, D. H. Oh, J. S. Park, I. Moon and M. Oh, Combust. Flame., 189, 12 (2018).

    Article  CAS  Google Scholar 

  18. S. H. Kim, B. W. Nyande, H. S. Kim, J. S. Park, W. J. Lee and M. Oh, J. Hazard. Mater., 308, 120 (2016).

    Article  CAS  PubMed  Google Scholar 

  19. K. Venkatarao and M. Santappa, J. Polym. Sci., 8, 1785 (1970).

    Article  CAS  Google Scholar 

  20. N. Y. Abu-Thabit, World J. Chem. Education, 5, 94 (2017).

    Article  CAS  Google Scholar 

  21. A. Echtermeyer, Y. Amar, J. Zakrzewski and A. Lapkin, Beilstein. J. Org. Chem., 13, 150 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. H. R. Lin, Eur. Polym. J., 37, 1507 (2001).

    Article  CAS  Google Scholar 

  23. I. Rintoul and C. Wandrey, Lat. Am. Appl. Res., 40, 365 (2010).

    CAS  Google Scholar 

  24. S. C. Kang, Y. J. Choi, H. Z. Kim, J. B. Kyong and D. K. Kim, Macromol. Res., 12, 107 (2004).

    Article  CAS  Google Scholar 

  25. P. Pladis, O. Kotrotsiou, C. Gkementzoglou and C. Kiparissides, A Comprehensive Kinetic Investigation of the Inverse Suspension Copolymerization of Acrylamide: Theoretical and Experimental Studies, 2015 10th Int. Conf. Panhellenic Scientific Conference in Chemical Engineering (2015).

    Google Scholar 

  26. Z. Abdollahi and V. G. Gomes, Synthesis and characterization of polyacrylamide with controlled molar weight, Chemeca 2011: Engineering a Better World (2011).

    Google Scholar 

  27. J. Xu, W. P. Zhao, C. X. Wang and Y. M. Wu, Express. Polym. Lett., 4, 275 (2010).

    Article  CAS  Google Scholar 

  28. Sigma-aldrich Co., https://doi.org/www.sigmaaldrich.com/catalog/product/aldrich/767379?lang=ko&region=KR&cm_sp=Insite-_-prodRec-Cold_xviews-_-prodRecCold10-1 (2018).

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Seong Uk Hong or Min Oh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, G.H., Vo, N.D., Jeon, R.Y. et al. Modeling and simulation for acrylamide polymerization of super absorbent polymer. Korean J. Chem. Eng. 35, 1791–1799 (2018). https://doi.org/10.1007/s11814-018-0093-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-018-0093-x

Keywords

Navigation