Skip to main content

Advertisement

Log in

Adsorption of carbon dioxide and water vapor on fly-ash based ETS-10

  • Environmental Engineering
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

CO2 capture from humid flue gas is always costly due to the irreplaceable pretreatment of dehydration in current processes, which creates an urgent demand for moisture-insensitive adsorbents with considerable CO2 uptakes as well as remarkable H2O tolerances. In the present work, the microporous titanium silicate molecular sieve ETS-10 was synthesized with coal fly ash as the only silica source. The as-synthesized ETS-10 was characterized by X-ray diffraction, scanning electronic microscopy and infrared spectroscopy to verify its crystal morphology, in which neither impurity nor aggregation was observed. The following CO2 adsorption experiments on the thermal gravimetric analyzer demonstrated its similar CO2 adsorption capacity yet dramatical adsorption kinetics among some other microporous materials, e.g., potassium chabazite. These specific properties consequently guaranteed its favorable CO2 adsorption capacity even at high temperatures (1.35 mmol/g at 393 K) and shortened the breakthrough time of single CO2 flow to less than 20 s. In CO2/H2O binary breakthrough experiments, the as-obtained ETS-10 still maintained excellent CO2 uptake of 0.81 mmol/g at 323 K, regardless of the presence of water vapor, making it a promising substitute for direct CO2 separation from humid flue gases at practical conditions of post-combustion adsorption.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Sun, Y. Wang, J. Chen, J. Zhai, C. Jing, X. Zeng, H. Ju, N. Zhao, M. Zhan and L. Luo, Quaternary International, 453, 74 (2017).

    Article  Google Scholar 

  2. L. Riboldi and O. Bolland, Energy Procedia, 114, 2156 (2017).

    Article  CAS  Google Scholar 

  3. S. Ga, H. Jang and J. H. Lee, Comput. Chem. Eng., 102, 188 (2017).

    Article  CAS  Google Scholar 

  4. M. Clausse, J. Merel and F. Meunier, Int. J. Greenhouse Gas Control, 5(5), 1206 (2011).

    Article  CAS  Google Scholar 

  5. G. Ferrara, A. Lanzini, P. Leone, M. Ho and D. Wiley, Energy, 130, 113 (2017).

    Article  CAS  Google Scholar 

  6. D. Zhang, H. Wang, C. Li and H. Meng, Chem. Eng. Res. Design, 125, 361 (2017).

    Article  CAS  Google Scholar 

  7. Z. Jawad, A. Ahmad, S. Low, R. Lee and P. Tan, Procedia Eng., 148, 327 (2016).

    Article  CAS  Google Scholar 

  8. W.L. Queen, E.D. Bloch, J.S. Lee, J.D. Howe, J.A. Mason, M. I. Gonzalez, M.R. Hudson, K. Lee, S. J. Teat and J.B. Neaton, [in] Proceedings of the Abstracts of Papers, 249th ACS National Meeting Exposition, Denver, CO, United States, March 22–26, 2015, 2015, PHYS-215.

    Google Scholar 

  9. F. Akhtar, S. Ogunwumi and L. Bergström, Scientific Reports, 7(1), 10988 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. T.-H. Bae, M.R. Hudson, J. A. Mason, W. L. Queen, J. J. Dutton, K. Sumida, K. J. Micklash, S. S. Kaye, C. M. Brown and J.R. Long, Energy Environ. Sci., 6(1), 128 (2013).

    Article  CAS  Google Scholar 

  11. M.M. Lozinska, E. Mangano, J. P. Mowat, A. M. Shepherd, R. F. Howe, S. P. Thompson, J. E. Parker, S. Brandani and P. A. Wright, J. Am. Chem. Soc., 134(42), 17628 (2012).

    Article  CAS  PubMed  Google Scholar 

  12. F. Su and C. Lu, Energy Environ. Sci., 5(10), 9021 (2012).

    Article  CAS  Google Scholar 

  13. S.R. Caskey, A. G. Wong-Foy and A. J. Matzger, J. Am. Chem. Soc., 130(33), 10870 (2008).

    Article  CAS  PubMed  Google Scholar 

  14. P. Nugent, Y. Belmabkhout, S.D. Burd, A. J. Cairns, R. Luebke, K. Forrest, T. Pham, S. Ma, B. Space and L. Wojtas, Nature, 495(7439), 80 (2013).

    Article  CAS  PubMed  Google Scholar 

  15. O. Shekhah, Y. Belmabkhout, Z. Chen, V. Guillerm, A. Cairns, K. Adil and M. Eddaoudi, Nature Commun., 5, 4228 (2014).

    Article  CAS  Google Scholar 

  16. R. Banerjee, A. Phan, B. Wang, C. Knobler, H. Furukawa, M. O’keeffe and O. M. Yaghi, Science, 319(5865), 939 (2008).

    Article  CAS  PubMed  Google Scholar 

  17. N.T. Nguyen, H. Furukawa, F. Gándara, H.T. Nguyen, K. E. Cordova and O. M. Yaghi, Angewandte Chemie, 126(40), 10821 (2014).

    Article  Google Scholar 

  18. M. Anderson, O. Terasaki, T. Ohsuna, A. Philippou, S. MacKay, A. Ferreira, J. Rocha and S. Lidin, Nature, 367(6461), 347 (1994).

    Article  CAS  Google Scholar 

  19. S. Uma, S. Rodrigues, I. N. Martyanov and K. J. Klabunde, Micropor. Mesopor. Mater., 67(2), 181 (2004).

    Article  CAS  Google Scholar 

  20. J. H. Choi, S.D. Kim, Y. J. Kwon and W. J. Kim, Micropor. Mesopor. Mater., 96(1), 157 (2006).

    Article  CAS  Google Scholar 

  21. M. Shi, A. M. Avila, F. Yang, T.M. Kuznicki and S. M. Kuznicki, Chem. Eng. Sci., 66(12), 2817 (2011).

    Article  CAS  Google Scholar 

  22. S. J. Datta, C. Khumnoon, Z. H. Lee, W. K. Moon, S. Docao, T.H. Nguyen, I.C. Hwang, D. Moon, P. Oleynikov and O. Terasaki, Science, 350(6258), 302 (2015).

    Article  CAS  PubMed  Google Scholar 

  23. E. Glueckauf and J. Coates, J. Chem. Soc., 1315 (1947).

    Google Scholar 

  24. Y. Ding and E. Alpay, Chem. Eng. Sci., 55(17), 3461 (2000).

    Article  CAS  Google Scholar 

  25. L. Liu, R. Singh, G. Li, P. Xiao, P. Webley and Y. Zhai, J. Hazard. Mater., 195, 340 (2011).

    Article  CAS  PubMed  Google Scholar 

  26. L. Lv, F. Su and X. Zhao, Micropor. Mesopor. Mater., 101(3), 355 (2007).

    Article  CAS  Google Scholar 

  27. Q. Zhou, Y. Duan, C. Zhu, J. Zhang, M. She, H. Wei and Y. Hong, Korean J. Chem. Eng., 32(7), 1405 (2015).

    Article  CAS  Google Scholar 

  28. H. Haroon, T. Ashfaq, S. M. H. Gardazi, T. A. Sherazi, M. Ali, N. Rashid and M. Bilal, Korean J. Chem. Eng., 33(10), 2898 (2016).

    Article  CAS  Google Scholar 

  29. P. Ammendola, F. Raganati and R. Chirone, Chem. Eng. J., 322, 302 (2017).

    Article  CAS  Google Scholar 

  30. T. Falayi and F. Ntuli, Korean J. Chem. Eng., 32(4), 707 (2015).

    Article  CAS  Google Scholar 

  31. J.-W. Lee, T. P. B. Nguyen and H. Moon, Korean J. Chem. Eng., 23(5), 812 (2006).

    Article  CAS  Google Scholar 

  32. G. Li, P. Xiao and P. Webley, Langmuir, 25(18), 10666 (2009).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Tao Du or Liying Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Du, T., Fang, X. et al. Adsorption of carbon dioxide and water vapor on fly-ash based ETS-10. Korean J. Chem. Eng. 35, 1642–1649 (2018). https://doi.org/10.1007/s11814-018-0078-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-018-0078-9

Keywords

Navigation