Skip to main content
Log in

Comparative kinetic study of coal gasification with steam and CO2 in molten blast furnace slags

  • Catalysis, Reaction Engineering
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

To make a comparison between coal gasification in molten blast furnace slag (MBFS) in different ambience and choose an appropriate agent to recover BF slag’s waste heat entirely, coal gasification with steam and CO2 in molten blast furnace slags was studied by isothermal thermo-gravimetric analysis. The effects of temperature and addition of MBFS were studied. Carbon conversion and reaction rate increased with increasing temperature and MBFS. Volumetric model (VM), shrinking core model (SCM), and diffusion model (DM) were applied to describe the coal gasification behavior of FX coal. The most appropriate model describing the coal gasification was SCM in steam ambience and VM in CO2 ambience, respectively. The reaction rate constant k(T) in CO2 ambience is greater than that in steam ambience, which means the gasification reactivity of coal in CO2 ambience is better than that in steam ambience. BF slag can effectively reduce the activation energy EA of coal gasification reaction in different ambiences. But, the difference of activation energies is not large in different ambiences. Based on the results of kinetic analysis including k(T) and EA calculated by the established model, CO2 was chosen to be the most appropriate agent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Molina and F. Mondragon, Fuel, 77, 1831 (1998).

    Article  CAS  Google Scholar 

  2. T. Takarada, Y. Tamai and A. Tomita, Fuel, 64, 1438 (1985).

    Article  CAS  Google Scholar 

  3. F. J. Maldonado-Hódar, J. Rivera-Utrilla and A.M. Mastral-Lamarca, Fuel, 74, 823 (1995).

    Article  Google Scholar 

  4. B. Feng and S. K. Bhatia, Carbon, 41, 507 (2003).

    Article  CAS  Google Scholar 

  5. Y. Niu, S. Wang, Y. Gong and S. e. Hui, Energy Procedia, 142, 1635 (2017).

    Article  CAS  Google Scholar 

  6. S. Zhu, Y. Bai, K. Luo, C. Hao, W. Bao and F. Li, J. Anal. Appl. Pyrol., 128, 13 (2017).

    Article  CAS  Google Scholar 

  7. Y. Sekine, K. Ishikawa, E. Kikuchi and M. Matsukata, Energy Fuel, 19, 326 (2005).

    Article  CAS  Google Scholar 

  8. Q. Sun, W. Li, H. Chen and B. Li, Fuel, 83, 1787 (2004).

    Article  CAS  Google Scholar 

  9. J. Xi, J. Liang, X. Sheng, L. Shi and S. Li, J. Anal. Appl. Pyrol., 117, 228 (2016).

    Article  CAS  Google Scholar 

  10. R.-L. Du, K. Wu, D.-A. Xu, C.-Y. Chao, L. Zhang and X.-D. Du, Fuel Process Technol., 148, 295 (2016).

    Article  CAS  Google Scholar 

  11. S. Niksa, L. Heyd, W. Russel and D. Saville, Symposium (International) on Combustion, Elsevier, 1445 (1985).

    Google Scholar 

  12. W. Duan, Q. Yu, Z. Zuo, Q. Qin, P. Li and J. Liu, Energy Convers. Manage., 87, 185 (2014).

    Article  CAS  Google Scholar 

  13. W. Duan, Q. Yu, H. Xie, Q. Qin and Z. Zuo, Int. J. Hydrogen Energy, 39, 11611 (2014).

    Article  CAS  Google Scholar 

  14. W. Duan, Q. Yu, H. Xie, J. Liu, K. Wang, Q. Qin and Z. Han, Int. J. Hydrogen Energy, 41, 1502 (2016).

    Article  CAS  Google Scholar 

  15. W. Duan, Q. Yu, K. Wang, Q. Qin, L. Hou, X. Yao and T. Wu, Energy Convers. Manage., 100, 30 (2015).

    Article  CAS  Google Scholar 

  16. P. Li, Q. Yu, Q. Qin and W. Lei, Ind. Eng. Chem. Res., 51, 15872 (2012).

    Article  CAS  Google Scholar 

  17. P. Li, Q. Yu, H. Xie, Q. Qin and K. Wang, Energy Fuel, 27, 4810 (2013).

    Article  CAS  Google Scholar 

  18. W. Duan, Q. Yu, T. Wu, F. Yang and Q. Qin, Int. J. Hydrogen Energy, 41, 18995 (2016).

    Article  CAS  Google Scholar 

  19. W. Duan, Q. Yu, J. Liu, T. Wu, F. Yang and Q. Qin, Energy, 111, 859 (2016).

    Article  CAS  Google Scholar 

  20. E. Kasai, T. Kitajima, T. Akiyama, J. Yagi and F. Saito, ISIJ Int., 37, 1031 (1997).

    Article  CAS  Google Scholar 

  21. Y. Qin, X. Lv, C. Bai, G. Qiu and P. Chen, Jom-us., 64, 997 (2012).

    Article  CAS  Google Scholar 

  22. H. Zhang, H. Wang, X. Zhu, Y.-J. Qiu, K. Li, R. Chen and Q. Liao, Appl. Energy, 112, 956 (2013).

    Article  Google Scholar 

  23. M. Barati, S. Esfahani and T. Utigard, Energy, 36, 5440 (2011).

    Article  CAS  Google Scholar 

  24. Y. Sun, Z. Zhang, L. Liu and X. Wang, Energies, 8, 1917 (2015).

    Article  CAS  Google Scholar 

  25. P. Li, Q. Qin, Q. B. Yu and W.Y. Du, Advanced Materials Research, Trans Tech Publ., 2347 (2010).

    Google Scholar 

  26. J. Tanner and S. Bhattacharya, Chem. Eng. J., 285, 331 (2016).

    Article  CAS  Google Scholar 

  27. Y. Wang and D. A. Bell, Fuel, 187, 94 (2017).

    Article  CAS  Google Scholar 

  28. A. Gomez and N. Mahinpey, Chem. Eng. Res. Des., 95, 346 (2015).

    Article  CAS  Google Scholar 

  29. K. Jayaraman, I. Gökalp and S. Jeyakumar, Appl. Therm. Eng., 110, 991 (2017).

    Article  CAS  Google Scholar 

  30. J. H. Zou, Z. J. Zhou, F. C. Wang, W. Zhang, Z. H. Dai, H. F. Liu and Z. H. Yu, Chem. Eng. Process.: Process. Intensification, 46, 630 (2007).

    Article  CAS  Google Scholar 

  31. R. Silbermann, A. Gomez, I. Gates and N. Mahinpey, Ind. Eng. Chem. Res., 52, 14787 (2013).

    Article  CAS  Google Scholar 

  32. S.K. Bhatia and D. Perlmutter, AIChE J., 26, 379 (1980).

    Article  CAS  Google Scholar 

  33. M. F. Irfan, M.R. Usman and K. Kusakabe, Energy, 36, 12 (2011).

    Article  CAS  Google Scholar 

  34. B. Jankovic, B. Adnadevic and J. Jovanovic, Thermochim. Acta, 452, 106 (2007).

    Article  CAS  Google Scholar 

  35. H. Liu, C. Luo, S. Kato, S. Uemiya, M. Kaneko and T. Kojima, Fuel Process. Technol., 87, 775 (2006).

    Article  CAS  Google Scholar 

  36. H. Liu, C. Luo, M. Toyota, S. Uemiya and T. Kojima, Fuel Process. Technol., 87, 769 (2006).

    Article  CAS  Google Scholar 

  37. M. Gao, Z. Yang, Y. Wang, Y. Bai, F. Li and K. Xie, Fuel, 189, 312 (2017).

    Article  CAS  Google Scholar 

  38. Y. Sun, J. Nakano, L. Liu, X. Wang and Z. Zhang, Sci. Rep-uk., 5, 11436 (2015).

    Article  CAS  Google Scholar 

  39. Y. Sun, Z. Zhang, L. Liu and X. Wang, Bioresour. Technol., 181, 174 (2015).

    Article  CAS  PubMed  Google Scholar 

  40. M. Kannan and G. Richards, Fuel, 69, 747 (1990).

    Article  CAS  Google Scholar 

  41. D.W. McKee, Carbon, 12, 453 (1974).

    Article  CAS  Google Scholar 

  42. L. Ren, J. Yang, F. Gao and J. Yan, Energy Fuel, 27, 5054 (2013).

    Article  CAS  Google Scholar 

  43. H. Liu, H. Zhu, M. Kaneko, S. Kato and T. Kojima, Energy Fuel, 24, 68 (2010).

    Article  CAS  Google Scholar 

  44. D. P. Ye, J. B. Agnew and D. K. Zhang, Fuel, 77, 1209 (1998).

    Article  CAS  Google Scholar 

  45. A.R. Pande, Fuel, 71, 1299 (1992).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qingbo Yu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, F., Yu, Q., Xie, H. et al. Comparative kinetic study of coal gasification with steam and CO2 in molten blast furnace slags. Korean J. Chem. Eng. 35, 1626–1635 (2018). https://doi.org/10.1007/s11814-018-0076-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-018-0076-y

Keywords

Navigation