Advertisement

Korean Journal of Chemical Engineering

, Volume 35, Issue 6, pp 1297–1302 | Cite as

His-tagged protein immobilization on cationic ferrite magnetic nanoparticles

  • Sung Jin Park
  • SeungYeon Kim
  • Seung Hoon Kim
  • Kyung Min Park
  • Byeong Hee Hwang
Biotechnology

Abstract

Magnetic nanoparticles have been applied in various fields because of their interesting magnetic properties. Immobilization on magnetic nanoparticles is a very important step in functionalizing them. We examined protein immobilization efficiency using interactions between his-tagged enhanced green fluorescence protein and affordable cationic ferrite magnetic nanoparticles for the first time. Four types of ferrite magnetic nanoparticles were verified: cobalt iron oxide, copper iron oxide, nickel iron oxide, and iron (III) oxide as negative controls. Among the four ferrite magnetic nanoparticles, copper ferrite magnetic nanoparticle was confirmed to have the highest immobilization efficiency at 3.0 mg proteins per gram ferrite magnetic nanoparticle and 78% of total enhanced green fluorescence protein. In addition, the maximum binding efficiency was determined for copper ferrite magnetic nanoparticle. Consequently, this newly verified his-tag-immobilizing capacity of copper ferrite magnetic nanoparticle could provide a facile, capable, and promising strategy for immobilizing his-tagged proteins or peptides with high purity for biosensors, magnetic separation, or diagnostics.

Keywords

Protein Immobilization Magnetic Nanoparticles Iron Oxides Detection Diagnosis 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    X. M. Li, J.R. Wei, K. E. Aifantis, Y. B. Fan, Q. L. Feng, F. Z. Cui and F. Watari, J. Biomed. Mater. Res. A, 104, 1285 (2016).CrossRefGoogle Scholar
  2. 2.
    I. S. Lee, N. Lee, J. Park, B. H. Kim, Y. W. Yi, T. Kim, T. K. Kim, I. H. Lee, S. R. Paik and T. Hyeon, J. Am. Chem. Soc., 128, 10658 (2006).CrossRefGoogle Scholar
  3. 3.
    J. L. Gu, H. F. Tong and L. Y. Sun, Biotechnol. Bioproc. E., 22, 76 (2017).CrossRefGoogle Scholar
  4. 4.
    I. M. El-Sherbiny, N. M. Elbaz, M. Sedki, A. Elgammal and M. H. Yacoub, Nanomedicine, 12, 387 (2017).CrossRefGoogle Scholar
  5. 5.
    C. Sun, J. S. Lee and M. Zhang, Adv. Drug. Deliv. Rev., 60, 1252 (2008).CrossRefGoogle Scholar
  6. 6.
    J. P. Fortin, C. Wilhelm, J. Servais, C. Menager, J. C. Bacri and F. Gazeau, J. Am. Chem. Soc., 129, 2628 (2007).CrossRefGoogle Scholar
  7. 7.
    A. H. Lu, E. L. Salabas and F. Schuth, Angew. Chem. Int. Ed., 46, 1222 (2007).CrossRefGoogle Scholar
  8. 8.
    J. Xu, J. Sun, Y. Wang, J. Sheng, F. Wang and M. Sun, Molecules, 19, 11465 (2014).CrossRefGoogle Scholar
  9. 9.
    C. Xu, K. Xu, H. Gu, R. Zheng, H. Liu, X. Zhang, Z. Guo and B. Xu, J. Am. Chem. Soc., 126, 9938 (2004).CrossRefGoogle Scholar
  10. 10.
    H.Y. Park, M. J. Schadt, L. Wang, I. S. Lim, P. N. Njoki, S. H. Kim, M.Y. Jang, J. Luo and C. J. Zhong, Langmuir, 23, 9050 (2007).CrossRefGoogle Scholar
  11. 11.
    W. Wang, Y. Xu, D. I. Wang and Z. Li, J. Am. Chem. Soc., 131, 12892 (2009).CrossRefGoogle Scholar
  12. 12.
    C. Xu, K. Xu, H. Gu, X. Zhong, Z. Guo, R. Zheng, X. Zhang and B. Xu, J. Am. Chem. Soc., 126, 3392 (2004).CrossRefGoogle Scholar
  13. 13.
    J. B. Yang, K. F. Ni, D. Z. Wei and Y.H. Ren, Biotechnol. Bioproc. E., 20, 901 (2015).CrossRefGoogle Scholar
  14. 14.
    Z. Rashid, H. Naeimi, A. H. Zarnani, F. Mohammadi and R. Ghahremanzadeh, Mat. Sci. Eng. C-Mater., 80, 670 (2017).CrossRefGoogle Scholar
  15. 15.
    Y. Zhou, S.F. Yuan, Q. Liu, D.D. Yan, Y. Wang, L. Gao, J. Han and H. F. Shi, Sci. Rep.-Uk, 7, 41741 (2017).CrossRefGoogle Scholar
  16. 16.
    J. Lee and J. H. Chang, Nanoscale Res. Lett., 9, 647 (2014).CrossRefGoogle Scholar
  17. 17.
    T. Kobayashi, N. Morone, T. Kashiyama, H. Oyamada, N. Kurebayashi and T. Murayama, PLoS One, 3, e3822 (2008).CrossRefGoogle Scholar
  18. 18.
    M.M. Bradford, Anal. Biochem., 72, 248 (1976).CrossRefGoogle Scholar
  19. 19.
    E. E. Balint, J. Petres, M. Szabo, C. K. Orban, L. Szilagyi and B. Abraham, J. Fluoresc., 23, 273 (2013).CrossRefGoogle Scholar
  20. 20.
    V. Gaberc-Porekar and V. Menart, J. Biochem. Biophys. Methods, 49, 335 (2001).CrossRefGoogle Scholar
  21. 21.
    E.K. Ueda, P.W. Gout and L. Morganti, J. Chromatogr. A, 988, 1 (2003).CrossRefGoogle Scholar
  22. 22.
    J.A. Bornhorst and J. J. Falke, Methods Enzymol., 326, 245 (2000).CrossRefGoogle Scholar
  23. 23.
    J. Arnau, C. Lauritzen, G.E. Petersen and J. Pedersen, Protein Expres. Purif., 48, 1 (2006).CrossRefGoogle Scholar
  24. 24.
    G. Nabiyouni, M. J. Fesharaki, M. Mozafari and J. Amighian, Chin. Phys. Lett., 27, 126401 (2010).CrossRefGoogle Scholar
  25. 25.
    K. Venkatesan, D. Rajan Babu, M.P. Kavya Bai, R. Supriya, R. Vidya, S. Madeswaran, P. Anandan, M. Arivanandhan and Y. Hayakawa, Int. J. Nanomedicine, 10 Suppl 1, 189 (2015).Google Scholar
  26. 26.
    B. L. Liu, Y. P. Fu and M. L. Wang, J. Nanosci. Nanotechnol., 9, 1491 (2009).CrossRefGoogle Scholar

Copyright information

© Korean Institute of Chemical Engineers, Seoul, Korea 2018

Authors and Affiliations

  1. 1.Division of BioengineeringIncheon National UniversityIncheonKorea

Personalised recommendations