Advertisement

Korean Journal of Chemical Engineering

, Volume 35, Issue 6, pp 1274–1280 | Cite as

Bioactivity kinetics of organic matter biodegradation and nitrification

  • Jianhui Wang
  • Lu Wang
  • Enyan Cui
  • Hai Lu
Environmental Engineering

Abstract

Biodegradation of organic matter and nitrification of ammonia nitrogen was studied by measuring the electron transport system (ETS) activity in activated sludge. The feasibility of characterizing the bioactivity of activated sludge based on the ETS was discussed. Then, bioactivity kinetics for the biodegradation and nitrification of organic matter was analyzed using the Michaelis–Menten equation. The results indicated that the ETS activity of activated sludge reflects the progression of organic matter biodegradation and nitrification of ammonia nitrogen; moreover, ETS activity is sensitive to the loading of organic matter and ammonia nitrogen and also to changes in alkalinity during the reaction. Therefore, it is feasible to characterize the bioactivity of an activated sludge system with ETS activity. The Michaelis constant for organic matter biodegradation was K T s=368.9 mg/L; U T m=90.9 mgTF/(gTss·h); K I s=88.42 mg/L; and U I m=277.8 mgINTF/(gTss·h); for the nitrification of ammonia nitrogen, the Michaelis constant was K T s=16.89 mg/L; U T m=34.6 mgTF/(gTss·h); K I s=6.0 mg/L; and U I m=196.08 mgINTF/(gTss·h). Additional analyses of bioactivity kinetics confirmed that the organic matter oxidation rate of heterotrophic bacteria was higher than that of autotrophic nitrifying bacteria.

Keywords

Organic Matter Biodegradation Nitrification ETS Activity Activated Sludge Kinetics 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    K. P. Jorgensen, J. WPCF, 56, 89 (1984).Google Scholar
  2. 2.
    V. N. Anupama, P. N. Amrutha, G. S. Chitra and B. Krishnakumar, Water Res., 42, 2796 (2008).CrossRefPubMedGoogle Scholar
  3. 3.
    J. T. Trevors, Water Res., 18, 581(1984).CrossRefGoogle Scholar
  4. 4.
    Y. M. Yun, S. K. Cho, H. W. Kim, K. W. Jung, H. S. Shin and D. H. Kim, Korean J. Chem. Eng., 32, 1542 (2015).CrossRefGoogle Scholar
  5. 5.
    A. Schmid, Environ. Sci. Pollution Res., 9, 227 (2002).CrossRefGoogle Scholar
  6. 6.
    R. N. Mohammed, S. Arab and X. W. Lu, Korean J. Chem. Eng., 30, 2043 (2013).CrossRefGoogle Scholar
  7. 7.
    J. Yin, X. J. Tan and N. Q. Ren, Environ. Sci., 26, 56 (2005).Google Scholar
  8. 8.
    Y. Z. Peng, J. F. Gao and S. Y. Wang, Water Sci. Technol., 46, 131 (2002).CrossRefPubMedGoogle Scholar
  9. 9.
    M. J. Chen, J. Y. Jiang and Y.X. Zhou, Res. Environ. Sci., 23, 340 (2010).Google Scholar
  10. 10.
    X.X. Tang, B. Ma and Z.B. Xu, J. Chem. Ind. Eng., 63, 3666 (2012).Google Scholar
  11. 11.
    J. L. Campos, A. Mosquera-Corral, M. Sanchez, R. Mendez and J.M. Lema, Water Res., 36, 2555 (2002).CrossRefPubMedGoogle Scholar
  12. 12.
    M.A. Dziurla, M. Salhi, P. Leroy, E. Paul, P. Ginestet and J.C. Block, Water Res., 39, 2591 (2005).CrossRefPubMedGoogle Scholar
  13. 13.
    B. P. McNicholl, J.W. McGrath and J. P. Quinn, Water Res., 41,127 (2007).CrossRefPubMedGoogle Scholar
  14. 14.
    J. S. Huang, C. S. Wu and C.M. Chen, Chemosphere, 61, 1032 (2005).CrossRefPubMedGoogle Scholar
  15. 15.
    L. B. Chu, J. L. Wang, B. Wang, X. H. Xing, S.T. Yan and X. L. Sun, Chemosphere, 77, 269 (2009).CrossRefPubMedGoogle Scholar
  16. 16.
    Y. Li and R. J. Chrost, Enzyme Microbial Technol., 39, 568 (2006).CrossRefGoogle Scholar
  17. 17.
    C. Aragón, M.D. Coello and J.M. Quiroga, Chem. Eng. Res. Design, 88, 641 (2010).CrossRefGoogle Scholar
  18. 18.
    T.T. Packard and M. L. Healy, J. Marine Res., 26, 66 (1968).Google Scholar
  19. 19.
    O. Jaag, Adv. Water Pollution Res., Elsevier Ltd., Tokyo (1964).Google Scholar
  20. 20.
    B.A. Southgate, Adv. Water Pollution Res., Elsevier Ltd., London (1962).Google Scholar
  21. 21.
    A. Klapwijk, J. Drent and J. H. A. M. Steenvoorden, Water Res., 8, 121 (1974).CrossRefGoogle Scholar
  22. 22.
    A.R. Fahmy and E. O’F Walsh, Biochem. J., 51, 55 (1952).CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    J.L. Campos, J. M. Garrido-Fernandez, R. Mendez and J. M. Lema, Bioresour. Technol., 68, 141 (1999).CrossRefGoogle Scholar
  24. 24.
    F. F. Wang, Y. H. Ding, L. Ge, H.Q. Ren and L. L. Ding, J. Environ. Sci., 22, 1683 (2010).CrossRefGoogle Scholar
  25. 25.
    J. Wu, G. Yan, G. J. Zhou and T. Xu, J. Environ. Chem. Eng., 2, 1899 (2014).CrossRefGoogle Scholar
  26. 26.
    Y.Y. Yan, L.Y. Feng, C. J. Zhang, H. G. Zhu and Q. Zhou, African J. Biotechnol., 9, 1776 (2010).CrossRefGoogle Scholar
  27. 27.
    J. S. Huang, H. H Chou, C. M. Chen and C. M. Chiang, Chemosphere, 68, 382 (2007).CrossRefPubMedGoogle Scholar
  28. 28.
    X. F. Wang, Method for Monitoring and Analyzing Water and Waste Water, China Environmental Science Press Pub., Beijing (2002).Google Scholar
  29. 29.
    Y Ding, D. B. Wang, X. M. Li, Q. Yang and G.M. Zeng, China Environ. Sci., 30, 333 (2010).Google Scholar
  30. 30.
    J. F. Gao, Y.Z. Peng and S.Y. Wang, Acta Scientiae Circumstantiae, 23, 733 (2003).Google Scholar
  31. 31.
    J. H. Wang, J. Yin and H. Lu, J. Chem. Ind. Eng., 63, 2234 (2012).Google Scholar
  32. 32.
    S. Li, Y. B. Sun and J. W. Feng, Acta Scientiae Circumstantiae, 28, 1074 (2008).Google Scholar

Copyright information

© Korean Institute of Chemical Engineers, Seoul, Korea 2018

Authors and Affiliations

  1. 1.Key Laboratory of Songliao Aquatic Environment, Ministry of EducationJilin Jianzhu UniversityChangchun City, Jilin ProvinceP. R. China
  2. 2.School of Construction EngineeringChangchun Sci-Tech UniversityChangchun City, Jilin ProvinceP. R. China

Personalised recommendations