Advertisement

Korean Journal of Chemical Engineering

, Volume 35, Issue 6, pp 1290–1296 | Cite as

Valorization of chitosan into levulinic acid by hydrothermal catalytic conversion with methanesulfonic acid

  • Hyo Seon Kim
  • Mi-Ra Park
  • Sung-Koo Kim
  • Gwi-Taek Jeong
Biotechnology

Abstract

As a potential renewable aquatic resource, chitosan is the second most abundant biopolymer. Methanesulfonic acid is a catalyst that is strongly acidic and biodegradable. We used chitosan and methanesulfonic acid to produce platform chemicals via an acid-catalyzed hydrothermal reaction. In the methanesulfonic acid-catalyzed hydrothermal conversion of chitosan, an optimal levulinic acid yield of 28.21±1.20% was achieved under the following conditions: 2% chitosan and 0.2 M methanesulfonic acid at 200 °C for 30 min. These results indicated that a combination of chitosan and methanesulfonic acid would be suitable for platform chemical production.

Keywords

Chitosan Methanesulfonic Acid Platform Chemicals 5-Hydroxymethylfurfural Levulinic Acid 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    H. Zang, S. Yu, P. Yu, H. Ding, Y. Du, Y. Yang and Y. Zhang, Carbohydr. Res., 442, 1 (2017).CrossRefPubMedGoogle Scholar
  2. 2.
    A. Osatiashtiani, A.F. Lee, D.R. Brown, J.A. Melerom, G. Morales and K. Wilson, Catal. Sci. Technol., 4, 333 (2014).CrossRefGoogle Scholar
  3. 3.
    D. J. Hayes, S. Fitzpatrick, M. H. B. Hayes and J. R. H. Ross, in Biorefineries-Industrial Processes and Products, B. Kamm, P.R. Gruber and M. Kamm Eds., WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim (2010).Google Scholar
  4. 4.
    J. J. Bozell and G.R. Petersen, Green Chem., 12, 539 (2010).CrossRefGoogle Scholar
  5. 5.
    T. H. Nguyen, C. H. Ra, Y. I. Sunwoo, G.T. Jeong and S. K. Kim, J. Microb. Biotechnol., 26, 1264 (2016).Google Scholar
  6. 6.
    A. Mukherjee, M.-J. Dumont and V. Raghavan, Biomass Bioenerg., 72, 143 (2015).CrossRefGoogle Scholar
  7. 7.
    A. Morone, M. Apte and R. A. Pandey, Renew. Sustain. Energ. Rev., 51, 548 (2015).CrossRefGoogle Scholar
  8. 8.
    G.T. Jeong, Ind. Crop. Prod., 62, 77 (2014).CrossRefGoogle Scholar
  9. 9.
    S. B. Lee and G.T. Jeong, Appl. Biochem. Biotechnol., 176, 1151 (2015).CrossRefPubMedGoogle Scholar
  10. 10.
    K.W. Omari, J. E. Besaw and F. M. Kerton, Green Chem., 14, 1480 (2012).CrossRefGoogle Scholar
  11. 11.
    Y. Wang, C. M. Pederson, T. Deng, Y. Qiao and X. Hou, Bioresour. Technol., 143, 384 (2013).CrossRefPubMedGoogle Scholar
  12. 12.
    S.B. Lee, S.K. Kim, Y.K. Hong and G.T. Jeong, Algal Res., 13, 303 (2016).CrossRefGoogle Scholar
  13. 13.
    C. Antonetti, D. Licursi, S. Fulignati, G. Valentinif and A.M.R. Galletti, Catalysts, 6, 196 (2016).CrossRefGoogle Scholar
  14. 14.
    F.D. Pileidis and M.M. Titirici, ChemSusChem, 9, 562 (2016).CrossRefPubMedGoogle Scholar
  15. 15.
    K. Yan, G. Wu, T. Lafleur and C. Jarvis, Sustain. Energy Rev., 38, 663 (2014).CrossRefGoogle Scholar
  16. 16.
    P.A. Son, S. Nishimura and K. Kohki Ebitani, React. Kinet. Mech. Catal., 106, 185 (2012).CrossRefGoogle Scholar
  17. 17.
    R. Weingarten, W. C. Conner and G.W. Huber, Energy Environ. Sci., 5, 7559 (2012).CrossRefGoogle Scholar
  18. 18.
    N. Ya’aini, N. A. Saidina Amin and M. Asmadi, Bioresour. Technol., 116, 58 (2012).CrossRefPubMedGoogle Scholar
  19. 19.
    S.K. Kim, Chitin, Chitosan, Oligosaccharides and Their Derivatives: Biological Activities and Applications, CRC Press, New York (2011).Google Scholar
  20. 20.
    R.G. Mackay and J.M. Tait, Handbook of chitosan research and applications, Nova Science Publishers, Inc., New York (2012).Google Scholar
  21. 21.
    F. Shahidi, J. K.V. Arachchi and Y. J. Jeon, Trends Food Sci. Technol., 10, 37 (1999).CrossRefGoogle Scholar
  22. 22.
    N. Yan and X. Chen, Nature, 524, 155 (2015).CrossRefPubMedGoogle Scholar
  23. 23.
    F.M. Kerton, Y. Liu, K.W. Omari and K. Hawboldt, Green Chem., 15, 860 (2013).CrossRefGoogle Scholar
  24. 24.
    S.K. Kim and N. Rajapakse, Carbohydr. Polym., 62, 357 (2005).CrossRefGoogle Scholar
  25. 25.
    Food and Agriculture Organization of the United States, The State of World Fisheries and Aquaculture 2014, 2014; http://www.fao.org/3/a-i3720e.pdf (Retrieved on Jan. 2, 2018).Google Scholar
  26. 26.
    X. Chen, H. Yang and N. Yan, Chem. Eur. J., 22, 13402 (2016).CrossRefPubMedGoogle Scholar
  27. 27.
    M.R. Park, S. K. Kim and G.T. Jeong, J. Ind. Eng. Chem., 61, 119 (2018).CrossRefGoogle Scholar
  28. 28.
    M.W. Drover, K.W. Omari, J. N. Murphy and F. M. Kerton, RSC Adv., 2, 4642 (2012).CrossRefGoogle Scholar
  29. 29.
    M. Osada, K. Kikuta, K. Yoshida, K. Totani, M. Ogata and T. Usui, Green Chem., 15, 2960 (2013).CrossRefGoogle Scholar
  30. 30.
    X. Gao, X. Chen, J. Zhang, W. Guo, F. Jin and N. Yan, ACS Sustainable Chem. Eng., 4, 3912 (2016).CrossRefGoogle Scholar
  31. 31.
    Y. Ohmi, S. Nishimura and K. Ebitani, ChemSusChem, 6, 2259 (2013).CrossRefPubMedGoogle Scholar
  32. 32.
    J. H. Yoon, Enzyme Microb. Technol., 37, 663 (2005).CrossRefGoogle Scholar
  33. 33.
    F.D. Bobbink, J. Zhang, Y. Pierson, X. Chen and N. Yan, Green Chem., 17, 1024 (2015).CrossRefGoogle Scholar
  34. 34.
    L. Zeng, C. Qin, L. Wang and W. Li, Carbohydr. Polym., 83, 1553 (2011).CrossRefGoogle Scholar
  35. 35.
    K. Omari, L. Dodot and F. M. Kerton, ChemSusChem, 5, 1767 (2012).CrossRefPubMedGoogle Scholar
  36. 36.
    D.W. Rackemann, J. P. Bartley and W.O. S. Doherty, Ind. Crop. Prod., 52, 46 (2014).CrossRefGoogle Scholar
  37. 37.
    D.W. Rackemann, J.P. Bartley, M.D. Harrison and W.O. S. Doherty, RSC Adv., 6, 74525 (2016).CrossRefGoogle Scholar
  38. 38.
    L.D. Mthembu, Production of levulinic acid from sugarcane bagasse, Durban University of Technology, Durban, South Africa. Master’s Thesis (2015).Google Scholar
  39. 39.
    M. Pedersen and A. S. Meyer, New Biotechnol., 27, 739 (2010).CrossRefGoogle Scholar
  40. 40.
    O.M. Kwon, D. H. Kim, S. K. Kim and G.T. Jeong, Algal Res., 13, 293 (2016).CrossRefGoogle Scholar
  41. 41.
    S. Yu, H. Zang, S. Chen, Y. Jiang, B. Yan and B. Cheng, Polym. Degrad. Stab., 134, 105 (2016).CrossRefGoogle Scholar
  42. 42.
    B. F.M. Kuster, Starch, 42, 314 (1990).CrossRefGoogle Scholar
  43. 43.
    G.T. Jeong and D. H. Park, Appl. Biochem. Biotechnol., 161, 41 (2010).CrossRefPubMedGoogle Scholar
  44. 44.
    S.C. Baker, D.P. Kelly and J.C. Murrell, Nature, 350, 627 (1991).CrossRefGoogle Scholar
  45. 45.
    G.T. Jeong, S. K. Kim and D. H. Park, Biotechnol. Bioprocess Eng., 18, 88 (2013).CrossRefGoogle Scholar
  46. 46.
    J. Lewkowski, ARKIVOC, 1, 17 (2001).Google Scholar
  47. 47.
    S.K.R. Patil and C.R. F. Lund, Energy Fuels, 25, 4745 (2011).CrossRefGoogle Scholar
  48. 48.
    Y. Su, H. M. Brown, X. Huang, X. d. Zhou, J. E. Amonette and Z. C. Zhang, Appl. Catal. A: Gen., 361, 117 (2009).CrossRefGoogle Scholar

Copyright information

© Korean Institute of Chemical Engineers, Seoul, Korea 2018

Authors and Affiliations

  • Hyo Seon Kim
    • 1
  • Mi-Ra Park
    • 1
  • Sung-Koo Kim
    • 1
  • Gwi-Taek Jeong
    • 1
  1. 1.Department of BiotechnologyPukyong National UniversityBusanKorea

Personalised recommendations