Damage to amorphous indium-gallium-zinc-oxide thin film transistors under Cl2 and BCl3 plasma

  • Jong Hoon Choi
  • Sung Jin Kim
  • Hyung Tae Kim
  • Sung Min Cho
Research papers
  • 16 Downloads

Abstract

Plasma damage of indium-gallium-zinc-oxide (IGZO) thin film transistor (TFT) was investigated. The IGZO TFT was fabricated and the performance was measured before and after BCl3 and/or Cl2 plasma treatment to evaluate the IGZO damage. The BCl3 and/or Cl2 plasma deteriorated the IGZO TFT performance significantly even after a short exposure time in the plasma. We propose a new wet etching process to remove a source/drain metal without damaging the underlying IGZO layer. The wet etching process can be utilized for the fabrication of IGZO TFT array using a roll-to-roll process via a self-aligned imprint lithography technique.

Keywords

Indium-gallium-zinc-oxide (IGZO) Thin Film Transistor (TFT) Plasma Damage Plasma Etching 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    E. Fortunato, P. Barquinha and R. Martins, Adv. Mater., 24, 2945 (2014).CrossRefGoogle Scholar
  2. 2.
    T. Kamiya, K. Nomura and H. Hosono, Sci. Technol. Adv. Mater., 11, 044305 (2010).CrossRefGoogle Scholar
  3. 3.
    J. S. Park, W.-J. Maeng, H.-S. Kim and J.-S. Park, Thin Solid Films, 520, 1679 (2012).CrossRefGoogle Scholar
  4. 4.
    J.Y. Bak, S. Yang, M. K. Ryu, S. H. Ko Park, C. S. Hwang and S. M. Yoon, ACS Appl. Mater. Interfaces, 4, 5369 (2012).CrossRefGoogle Scholar
  5. 5.
    H.-J. Kim, M. Almanza-Workman, B. Garcia, O. Kwon, F. Jeffrey, S. Braymen, J. Hauschildt, K. Junge, D. Larson, D. Stieler, A. Chaiken, B. Cobene, R. Elder, W. Jackson, M. Jam, A. Jeans, H. Luo, P. Mei, C. Perlov and C. Taussig, J. SID, 17, 963 (2009).Google Scholar
  6. 6.
    S. Li and D. Chu, Flex. Print. Electron., 2, 013002 (2017).CrossRefGoogle Scholar
  7. 7.
    E. Lausecker, Y. Huang, T. Fromherz, J. C. Sturm and S. Wagner, Appl. Phys. Lett., 96, 263501 (2010).CrossRefGoogle Scholar
  8. 8.
    P. Mei, M. Almanza-Workman, A. Chaiken, R. L. Cobene, R. Elder, B. Garcia, W. Jackson, M. Jam, A. Jeans, H. J. Kim, O. Kwon, H. Luo, C. Perlov and C. Taussig, J. Nanosci. Nanotechnol., 10, 7419 (2010).CrossRefGoogle Scholar
  9. 9.
    J.-S. Park, J. K. Jeong, Y.-G. Mo, H.D. Kim and S.-I. Kim, Appl. Phys. Lett., 90, 262106 (2007).CrossRefGoogle Scholar
  10. 10.
    J.-S. Kim, M.-K. Joo, M. X. Piao, S.-E. Ahn, Y.-H. Choi, H.-K. Jang and G.-T. Kim, J. Appl. Phys., 115, 114503 (2014).CrossRefGoogle Scholar
  11. 11.
    P.K. Nayak, M.N. Hedhili, D. Cha and H.N. Alshareef, Appl. Phys. Lett., 100, 202106 (2012).CrossRefGoogle Scholar
  12. 12.
    W. Park, K.-W. Whang, Y. G. Yoon, J. H. Kim, S.-H. Rha and C. S. Hwang, Appl. Phys. Lett., 99, 062110 (2011).CrossRefGoogle Scholar
  13. 13.
    Y.-H. Joo, J.-C. Woo and C.-I. Kim, J. Electrochem. Soc., 159, D190 (2012).CrossRefGoogle Scholar

Copyright information

© Korean Institute of Chemical Engineers, Seoul, Korea 2018

Authors and Affiliations

  • Jong Hoon Choi
    • 1
  • Sung Jin Kim
    • 2
    • 3
  • Hyung Tae Kim
    • 1
  • Sung Min Cho
    • 1
  1. 1.School of Chemical EngineeringSungkyunkwan UniversitySuwonKorea
  2. 2.School of Semiconductor & Display EngineeringSungkyunkwan UniversitySuwonKorea
  3. 3.Display LaboratorySamsung Institute of TechnologyYonginKorea

Personalised recommendations