Korean Journal of Chemical Engineering

, Volume 35, Issue 6, pp 1263–1273 | Cite as

Kinetic models of Fischer-Tropsch synthesis reaction over granule-type Pt-promoted Co/Al2O3 catalyst

  • Hyun Mo Koo
  • Myung June Park
  • Dong Ju Moon
  • Jong Wook Bae
Catalysis, Reaction Engineering


Kinetic models of CO hydrogenation to paraffinic hydrocarbons through Fischer-Tropsch synthesis (FTS) reaction were studied by using Langmuir-Hinshelwood Hougen-Watson (LHHW) model of 16 different reaction steps with a pseudo steady-state assumption (PSSA) on the prototype Pt-promoted Co/Al2O3 catalyst having a granule size of ∼1 mm of spherical γ-Al2O3 support (surface area of 149m2/g). The derived kinetic models from ten sets of experimental data by altering the reaction conditions such as temperatures, pressures, space velocities and H2/CO molar ratios were found to be well fitted with reasonable kinetic parameters and small errors of conversion of CO and hydrocarbon distributions in terms of mean absolute relative residual (MARR) and relative standard deviation error (RSDE). The derived reaction rates and CO activation energy of -86 kJ/mol well correspond to the our previously reported results using power-type catalysts. Based on the LHHW model with PSSA, the possible chemical intermediates on the granule ball-type Co-Pt/Al2O3 surfaces were precisely considered to explain the typical adsorption, initiation, propagation and termination steps of FTS reaction as well as to derive elementary reaction rates with their kinetic parameters and hydrocarbon distributions. The derived kinetic models were further used to verify temperature-profiles in a pilot-scale fixed-bed tubular FTS reactor with a packing depth of 100 cm catalyst, and it confirmed that the temperature gradients were less than 10 °C in a length of reactor by effectively removing the generated heat by an exothermic FTS reaction.


Fischer-Tropsch Synthesis (FTS) Reaction Cobalt-based FTS Catalyst Kinetic Parameter Estimations Langmuir-Hinshelwood Hougen-Watson (LHHW) Model Pseudo Steady-state Assumption (PSSA) 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

11814_2018_32_MOESM1_ESM.pdf (118 kb)
Kinetic models of Fischer-Tropsch synthesis reaction over granule-type Pt-promoted Co/Al2O3 catalyst


  1. 1.
    A. Y. Khodakov, W. Chu and P. Fongarland, Chem. Rev., 107, 1692 (2007).CrossRefPubMedGoogle Scholar
  2. 2.
    B. H. Davis, Top. Catal., 32, 143 (2005).CrossRefGoogle Scholar
  3. 3.
    E. Iglesia, Appl. Catal. A, 161, 59 (1997).CrossRefGoogle Scholar
  4. 4.
    M. E. Dry, Catal. Today, 71, 227 (2002).CrossRefGoogle Scholar
  5. 5.
    N. Tsubaki, S. Sun and K. Fujimoto, J. Catal., 199, 236 (2001).CrossRefGoogle Scholar
  6. 6.
    S. H. Song, B. S. Lee, J.W. Bae, P. S. Sai Prasad and K.W. Jun, Catal. Commun., 9, 2282 (2008).CrossRefGoogle Scholar
  7. 7.
    M.H. Woo, J.M. Cho, K.W. Jun, Y. J. Lee and J.W. Bae, Chem-CatChem, 7, 1460 (2015).Google Scholar
  8. 8.
    S. H. Kwack, M. J. Park, J.W. Bae, S. J. Park, K. S. Ha and K.W. Jun, Fuel Process. Technol., 92, 2264 (2011).CrossRefGoogle Scholar
  9. 9.
    S. J. Park, S. M. Kim, M. H. Woo, J.W. Bae, K.W. Jun and K. S. Ha, Appl. Catal. A: Gen., 419-420, 148 (2012).CrossRefGoogle Scholar
  10. 10.
    B. S. Lee, I. H. Jang, J.W. Bae, S. H. Um, P. J. Yoo, M. J. Park, Y.C. Lee and K.W. Jun, Catal. Surv. Asia., 16, 121 (2012).CrossRefGoogle Scholar
  11. 11.
    S.H. Kwack, J.W. Bae, M. J. Park, S.M. Kim, K.S. Ha and K.W. Jun, Fuel, 90, 1383 (2011).CrossRefGoogle Scholar
  12. 12.
    S.H. Kwack, M. J. Park, J.W. Bae, K. S. Ha and K.W. Jun, Reac. Kinet. Mech. Catal., 104, 483 (2011).CrossRefGoogle Scholar
  13. 13.
    G. Yang, D. Gao, J. Zhang, J. Zhang, Z. Shi, Z. Zhu and D. Xue, RSC Adv., 3, 508 (2013).CrossRefGoogle Scholar
  14. 14.
    C. I. Ahn, H.M. Koo, J.M. Cho, H. S. Roh, J.B. Lee, Y. J. Lee, E. J. Jang and J.W. Bae, Appl. Catal. B: Environ., 180, 139 (2016).CrossRefGoogle Scholar
  15. 15.
    H. Zhu, R. Razzaq, L. Jiang and C. Li, Catal. Commun., 23, 43 (2012).CrossRefGoogle Scholar
  16. 16.
    B.A. Sexton, A. E. Hughes and T.W. Turney, J. Catal., 97, 390 (1986).CrossRefGoogle Scholar
  17. 17.
    R. J. Madon and E. Iglesia, J. Catal., 139, 576 (1993).CrossRefGoogle Scholar
  18. 18.
    A. Lapidus, A. Krylova, V. Kazanskii, V. Borovkov, A. Zaitsev, J. Rathousky, A. Zukal and M. Jancalkova, Appl. Catal. A, 73, 65 (1991).CrossRefGoogle Scholar
  19. 19.
    K. H. Cats and B. M. Weckhuysen, ChemCatChem, 8, 1531 (2016).CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    C. I. Ahn, H.M. Koo, M. Jin, J.M. Kim, T.G. Kim, Y.W. Suh, K. J. Yoon and J.W. Bae, Micropor. Mesopor. Mater., 188, 196 (2014).CrossRefGoogle Scholar
  21. 21.
    V. Ponec and W.A. van Barneveld, Ind. Eng. Chem. Prod. Res. Dev., 18, 268 (1979).CrossRefGoogle Scholar
  22. 22.
    C.K. Rofer-DePoorter, Chem. Rev., 81, 447 (1981).CrossRefGoogle Scholar
  23. 23.
    K. H. Ernst, E. Schwarz and K. Christmann, J. Chem. Phys., 101, 5388 (1994).CrossRefGoogle Scholar
  24. 24.
    J.T. Kummer, T.W. DeWitt and P. H. Emmett, J. Am. Chem. Soc., 70, 3632 (1948).CrossRefPubMedGoogle Scholar
  25. 25.
    E. van Steen and H. Schulz, Appl. Catal. A., 186, 309 (1999).CrossRefGoogle Scholar
  26. 26.
    A.T. Bell, Catal. Rev. Sci. Eng., 23, 203 (1980).CrossRefGoogle Scholar
  27. 27.
    C. S. Kellner and A.T. Bell, J. Catal., 70, 418 (1981).CrossRefGoogle Scholar
  28. 28.
    J. P. Hovi, J. Lahtinen, Z. S. Liu and R. M. Nieminen, J. Chem. Phys., 102, 7674 (1995).CrossRefGoogle Scholar
  29. 29.
    W.A. A. van Barneveld and V. Ponec, J. Catal., 88, 382 (1984).CrossRefGoogle Scholar
  30. 30.
    R.W. Joyner, Catal. Lett., 1, 307 (1988).CrossRefGoogle Scholar
  31. 31.
    H. Schulz, K. Beck and E. Erich, Fuel. Process. Technol., 18, 293 (1988).CrossRefGoogle Scholar
  32. 32.
    C. G. Visconti, E. Tronconi, L. Lietti, R. Zennaro and P. Forzatti, Chem. Eng. Sci., 62, 5338 (2007).CrossRefGoogle Scholar
  33. 33.
    H. J. Jun, M. J. Park, S. C. Baek, J. W. Bae, K. S. Ha and K. W. Jun, J. Natural Gas Chem., 20, 9 (2011).CrossRefGoogle Scholar

Copyright information

© Korean Institute of Chemical Engineers, Seoul, Korea 2018

Authors and Affiliations

  1. 1.School of Chemical EngineeringSungkyunkwan University (SKKU)Suwon, Gyeonggi-doKorea
  2. 2.Department of Energy Systems ResearchAjou UniversitySuwon, Gyeonggi-doKorea
  3. 3.Clean Energy Chemical EngineeringKorea Institute of Science and Technology (KIST)Seongbuk-gu, SeoulKorea

Personalised recommendations