Advertisement

Korean Journal of Chemical Engineering

, Volume 35, Issue 6, pp 1380–1387 | Cite as

Effect of inlet particle arrangement on separating property of a cyclone separator

  • An-Lin Liu
  • Yan-Hong Zhang
  • Liang Ma
  • Yi-Mou Wang
  • Meng-Ya He
Fluidization, Particle Technology
  • 34 Downloads

Abstract

Different arrangements of particles on the inlet section exert different effects on the separation property of a cyclone separator. Sorting classifier with different heights was connected in series with a conventional cyclone, positive rotation cyclone, and reverse rotation cyclone respectively, to investigate the effect of particle arrangement on the separation property and inner flow field. Results indicate that the implementation of a sorting classifier increases the pressure drop and energy consumption of a cyclone separator. The taller the sorting classifier, the larger the flow is. The energy consumption in positive rotation cyclone is closer to that in reverse rotation cyclone. Meanwhile, the tangential velocity in inner flow field is higher and the separating property is enhanced. The reverse rotation cyclone relieves the fishhook effect, whereas the positive rotation cyclone eliminates such effect. The reverse and positive rotation cyclones demonstrate an improved separating property for particles smaller and greater than 1 μm, respectively. Moreover, the reverse rotation cyclone demonstrates superior overall separation, but the positive rotation cyclone demonstrates a greater classification effect than the reverse rotation cyclone.

Keywords

Cyclone Separator Particle Arrangement Particle Image Velocimetry (PIV) Separating Property 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. C. Chow, J. G. Watson, J. L. Mauderly, D. L. Costa and R. Wyzga, J. Air Waste Manage. Assoc., 56, 1368 (2006).CrossRefGoogle Scholar
  2. 2.
    Z. Antonella and S. Joel, Environ. Health Persp., 117, 898 (2009).CrossRefGoogle Scholar
  3. 3.
    B. Michael, F. Greg, J. F. Joseph and C. Aaron, Environ. Sci. Technol., 50, 79 (2016).CrossRefGoogle Scholar
  4. 4.
    S. Movafaghiana, J. A. Jaua-Martureta, R. S. Mohana, O. Shohama and G. E. Koubab, Int. J. Multiphas Flow, 26, 999 (2000).CrossRefGoogle Scholar
  5. 5.
    Y. H. Zhang, A. L. Liu, L. Ma and Y. M. Wang, Aerosol. Air Qual. Res., 16, 2287 (2016).CrossRefGoogle Scholar
  6. 6.
    L. Ma, J. P. Wu, Y. H. Zhang, Q. S. Shen, J. P. Li and H. L. Wang, Aerosol. Air Qual. Res., 14, 1675 (2014).Google Scholar
  7. 7.
    L. Ma, Q. S. Shen, J. P. Li, Y. H. Zhang, J. P. Wu and H. L. Wang, Chem. Eng. Technol., 37, 1072 (2014).CrossRefGoogle Scholar
  8. 8.
    L. Ma, Q. Yang, Y. Huang, P. Qian and J. G. Wang, Chem. Eng. Technol., 36, 696 (2013).CrossRefGoogle Scholar
  9. 9.
    C. W. Haig, A. Hursthouse, S. McIlwain and D. Sykes, Powder Technol., 258, 110 (2014).CrossRefGoogle Scholar
  10. 10.
    C. C. Gutierrez-Torres, P. Quinto-Diez, J. A. Jimenez-Bernal, A. Lopez-Lobato and J. G. Barbosa-Saldaña, Int. J. Miner. Process, 102, 156 (2012).CrossRefGoogle Scholar
  11. 11.
    K. Elsayed and C. Lacor, Appl. Math. Model., 35, 1952 (2011).CrossRefGoogle Scholar
  12. 12.
    D. Misiulia, A. G. Andersson and T. S. Lundström, Chem. Eng. Res. Des., 102, 307 (2015).CrossRefGoogle Scholar
  13. 13.
    F. P. Qian and Y. P. Wu, Chem. Eng. Res. Des., 87, 1567 (2009).CrossRefGoogle Scholar
  14. 14.
    A. Wang, X. K. Yan and L. J. Wang, Sep. Purif. Technol., 149, 308 (2015).CrossRefGoogle Scholar
  15. 15.
    C. Y. Hsu and R. M. Wu, Dry Technol., 28, 916 (2010).CrossRefGoogle Scholar
  16. 16.
    P. B. Fu, F. Wang, L. Ma, X. J. Yang and H. L. Wang, Sep. Purif. Technol., 158, 357 (2016).CrossRefGoogle Scholar
  17. 17.
    P. B. Fu, F. Wang, X. J. Yang, L. Ma, X. Cui and H. L. Wang, Environ. Sci. Technol., 51, 1587 (2017).CrossRefGoogle Scholar
  18. 18.
    L. Ma, P. B. Fu, J. P. Wu, F. Wang, J. P. Li, Q. S. Shen and H. L. Wang, Aerosol. Air Qual. Res., 15, 2456 (2015).CrossRefGoogle Scholar
  19. 19.
    Q. Yang, W. J. Lv, L. Ma and H. L. Wang, Sep. Purif. Technol., 102, 15 (2013).CrossRefGoogle Scholar
  20. 20.
    Y. Hiraiwa, T. Oshitari, K. Fukui, T. Yamamoto and H. Yoshida, Sep. Purif. Technol., 118, 670 (2013).CrossRefGoogle Scholar
  21. 21.
    Z. B. Wang, L. Y. Chu, W. M. Chen and S. G. Wang, Chem. Eng. J., 138, 1 (2008).CrossRefGoogle Scholar
  22. 22.
    P. K. Liu, L. Y. Chu, J. Wang and Y. F. Yu, Chem. Eng. Technol., 31, 474 (2008).CrossRefGoogle Scholar
  23. 23.
    Y. Xu, J. G. Wang, S. L. Zhao and Z. S. Bai, Chem. Eng. Res. Des., 94, 691 (2015).CrossRefGoogle Scholar
  24. 24.
    J. G. Wang, Z. S. Bai, Q. Yang, Y. Fan and H. L. Wang, Sep. Purif. Technol., 163, 120 (2016).CrossRefGoogle Scholar

Copyright information

© Korean Institute of Chemical Engineers, Seoul, Korea 2018

Authors and Affiliations

  • An-Lin Liu
    • 1
  • Yan-Hong Zhang
    • 1
  • Liang Ma
    • 1
  • Yi-Mou Wang
    • 1
  • Meng-Ya He
    • 1
  1. 1.School of Mechanical and Power EngineeringEast China University of Science and TechnologyShanghaiChina

Personalised recommendations