Advertisement

Korean Journal of Chemical Engineering

, Volume 35, Issue 6, pp 1312–1318 | Cite as

Efficient conversion of fructose to 5-[(formyloxy)methyl]furfural by reactive extraction and in-situ esterification

  • Caixia Xiong
  • Yong Sun
  • Juan Du
  • Wei Chen
  • Zhihao Si
  • He Gao
  • Xing Tang
  • Xianhai Zeng
Separation Technology, Thermodynamics
  • 56 Downloads

Abstract

5-[(Formyloxy)methyl]furfural (FMF), an analogue of 5-(hydroxymethyl)furfural (HMF) is becoming more attractive due to its superior stability and hydrophobicity, which make it easier to refineand store. In the present study, FMF was produced from fructose by one-pot approach in pure formic acid media or by a two-step approach via HMF in choline chloride (ChCl)/fructose deep eutectic solvents (DES) system. A favorable FMF yield of 63.22% was reached by two-step approach. In addition, the effects of reaction parameters, such as temperature and acidity, on preparation of FMF from fructose were systematically investigated. The dehydration of fructose into HMF was confirmed as the rate-controlling step in the consecutive reaction. Ultimately, the separation and purification procedures of FMF were put forward. The FMF with a purity of 98.8% was obtained finally. Meanwhile, the FMF purified by saturated sodium bicarbonate solution showed an excelled storage stability.

Keywords

5-[(Formyloxy)methyl]furfural 5-Hydroxymethylfurfural Fructose Deep Eutectic Solvents Purification 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. N. Naik, V. V. Goud, P. K. Rout and A. K. Dalai, Renewable Sustainable Energy Rev., 14, 578 (2010).CrossRefGoogle Scholar
  2. 2.
    Y. Nakagawa, M. Tamura and K. Tomishige, ACS Catal., 3, 2655 (2013).CrossRefGoogle Scholar
  3. 3.
    J. J. Bozell and G.R. Petersen, Green Chem., 12, 539 (2010).CrossRefGoogle Scholar
  4. 4.
    R. J. van Putten, J. C. van der Waal, E. de Jong, C.B. Rasrendra, H. J. Heeres and J. G. de Vries, Chem. Rev., 113, 1499 (2013).CrossRefPubMedGoogle Scholar
  5. 5.
    N. Esmaeili, M. J. Zohuriaan-Mehr, H. Bouhendi and G. Bagheri-Marandi, Korean J. Chem. Eng., 33, 1964 (2016).CrossRefGoogle Scholar
  6. 6.
    Z. Zhang, Q. Wang, H. Xie, W. Liu and Z. K. Zhao, ChemSus-Chem, 4, 131 (2011).CrossRefGoogle Scholar
  7. 7.
    H. Zhao, J. E. Holladay, H. Brown and Z. C. Zhang, Science, 316, 1597 (2007).CrossRefPubMedGoogle Scholar
  8. 8.
    A. P. Abbott, D. Boothby, G. Capper, D.L. Davies and R.K. Rasheed, J. Am. Chem. Soc., 126, 9142 (2004).CrossRefPubMedGoogle Scholar
  9. 9.
    K. D. O. Vigier, G. Chatel and F. Jerome, ChemCatChem, 7, 1250 (2015).CrossRefGoogle Scholar
  10. 10.
    W. Tang, L. Liu, G. Li, T. Zhu and K. H. Row, Korean J. Chem. Eng., 34, 814 (2016).CrossRefGoogle Scholar
  11. 11.
    F. Ilgen, D. Ott, D. Kralisch, C. Reil, A. Palmberger and B. König, Green Chem., 11, 1948 (2009).CrossRefGoogle Scholar
  12. 12.
    Q. Zhao, Z. Sun, S. Wang, G. Huang, X. Wang and Z. Jiang, RSC Adv., 4, 63055 (2014).CrossRefGoogle Scholar
  13. 13.
    F. Liu, J. Barrault, K. De Oliveira Vigier and F. Jérôme, ChemSus-Chem, 5, 1223 (2012).CrossRefGoogle Scholar
  14. 14.
    C. Li, Z. K. Zhao, A. Wang, M. Zheng and T. Zhang, Carbohydr. Res., 345, 1846 (2010).CrossRefPubMedGoogle Scholar
  15. 15.
    Y. T. Jiang, W. Chen, Y. Sun, Z. Li, X. Tang, X. H. Zeng, L. Lin and S. J. Liu, Ind. Crops Prod., 83, 408 (2016).CrossRefGoogle Scholar
  16. 16.
    Z. Du, J. Ma, F. Wang, J. Liu and J. Xu, Green Chem., 13, 554 (2011).CrossRefGoogle Scholar
  17. 17.
    F. L. Grasset, B. Katryniok, S. Paul, V. Nardello-Rataj, M. Pera-Titus, J. M. Clacens, F. De Campo and F. Dumeignil, RSC Adv., 3, 9942 (2013).CrossRefGoogle Scholar
  18. 18.
    T. Thananatthanachon and T. B. Rauchfuss, Angew. Chem. Int. Ed., 49, 6616 (2010).CrossRefGoogle Scholar
  19. 19.
    S. De, S. Dutta and B. Saha, ChemSusChem, 5, 1826 (2012).CrossRefPubMedGoogle Scholar
  20. 20.
    X. Zhou and T. B. Rauchfuss, ChemSusChem, 6, 383 (2013).CrossRefPubMedGoogle Scholar
  21. 21.
    E. S. Kang, Y.W. Hong, D.W. Chae, B. Kim, B. Kim, Y. J. Kim, J. K. Cho and Y.G. Kim, ChemSusChem, 8, 1179 (2015).CrossRefPubMedGoogle Scholar
  22. 22.
    Y. Sun and L. Lin, J. Agric. Food Chem., 58, 2253 (2010).CrossRefPubMedGoogle Scholar
  23. 23.
    P. Wrigstedt, J. Keskiväli, M. Leskelä and T. Repo, ChemCatChem, 7, 501 (2015).CrossRefGoogle Scholar
  24. 24.
    B. Girisuta, L. Janssen and H. J. Heeres, Green Chem., 8, 701 (2006).CrossRefGoogle Scholar
  25. 25.
    H. E. Van Dam, A. P. G. Kieboom and H. van Bekkum, Starch-Stärke, 38, 95 (1986).CrossRefGoogle Scholar
  26. 26.
    F. S. Asghari and H. Yoshida, Ind. Eng. Chem. Res., 46, 7703 (2007).CrossRefGoogle Scholar
  27. 27.
    M. Zuo, K. Le, Z. Li, Y. Jiang, X. Zeng, X. Tang, Y. Sun and L. Lin, Ind. Crops Prod., 99, 1 (2017).CrossRefGoogle Scholar

Copyright information

© Korean Institute of Chemical Engineers, Seoul, Korea 2018

Authors and Affiliations

  • Caixia Xiong
    • 1
  • Yong Sun
    • 1
  • Juan Du
    • 1
  • Wei Chen
    • 1
  • Zhihao Si
    • 1
  • He Gao
    • 1
  • Xing Tang
    • 1
  • Xianhai Zeng
    • 1
  1. 1.Xiamen Key Laboratory of High-valued Conversion Technology of Agricultural Biomass, College of EnergyXiamen UniversityXiamenChina

Personalised recommendations