Advertisement

Korean Journal of Chemical Engineering

, Volume 35, Issue 6, pp 1373–1379 | Cite as

Two dimensional Zn-stilbenedicarboxylic acid (SDC) metal-organic frameworks for cyclic carbonate synthesis from CO2 and epoxides

  • Gak-Gyu Choi
  • Jintu Francis Kurisingal
  • Yongchul G. Chung
  • Dae-Won Park
Polymer, Industrial Chemistry

Abstract

A two-dimensional Zn-based metal-organic framework has been synthesized by using Zn(II) ions and H2SDC (4,4′-stilbenedicarboxylic acid) under solvothermal conditions. The framework having a trinuclear Zn3-(RCO2)6 SBUs connected by the 4,4′-stilbenedicarboxylic acid to form a hexagonal network, shows a two-dimensional structure and displays high thermal stability up to approximately 330 °C. The role of Zn2+ (from Zn-SDC) for epoxide activation and Br-ion (from TBABr) for ring opening of epoxide was studied for the cycloaddition reaction of CO2 and propylene oxide (PO) under ambient conditions. Zn-SDC was found catalytically efficient towards CO2-epoxide coupling under ambient reaction conditions with high selectivity towards the desired cyclic carbonates under solvent-free conditions. The effects of various reaction parameters such as catalyst loading, temperature, CO2 pressure, and time were evaluated. Zn-SDC was easily separable and reusable at least five times without any considerable loss in the initial activity. A plausible reaction mechanism for the cycloaddition reaction was also proposed based on literature and experimental inferences.

Keywords

Metal Organic Frameworks Zn-SDC CO2 Epoxide Cyclic Carbonate 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

11814_2018_23_MOESM1_ESM.pdf (246 kb)
Two dimensional Zn-stilbenedicarboxylic acid (SDC) metal-organic frameworks for cyclic carbonate synthesis from CO2 and epoxides

References

  1. 1.
    S. Klaus, M. W. Lehenmeier, C. E. Anderson and B. Rieger, Coord. Chem. Rev., 255, 1460 (2011).CrossRefGoogle Scholar
  2. 2.
    M. Aresta and A. Dibenedetto, Dalton Trans., 28, 2975 (2007).CrossRefGoogle Scholar
  3. 3.
    J. Melendez, M. North and P. Villuendas, Chem. Commun., 18, 2577 (2009).CrossRefGoogle Scholar
  4. 4.
    M. Tu and R. J. Davis, J. Catal., 199, 85 (2001).CrossRefGoogle Scholar
  5. 5.
    E. J. Doskocil, Micropor. Mesopor. Mater., 76, 177 (2004).CrossRefGoogle Scholar
  6. 6.
    E. J. Doskocil, J. Phys. Chem. B., 109, 2315 (2005).CrossRefPubMedGoogle Scholar
  7. 7.
    R. Srivastava, D. Srinivas and P. Ratnasamy, Appl. Catal. A: Gen., 289, 128 (2005).CrossRefGoogle Scholar
  8. 8.
    D. Alhashmialameer, J. Collins, K. Hattenhauera and F. M. Kerton, Catal. Sci. Technol., 6, 5364 (2016).CrossRefGoogle Scholar
  9. 9.
    D. J. Darensbourg and S. B. Fitch, Inorg. Chem., 47, 11868 (2008).CrossRefPubMedGoogle Scholar
  10. 10.
    P. P. Pescarmona and M. Taherimehr, Catal. Sci. Technol., 2, 2169 (2012).CrossRefGoogle Scholar
  11. 11.
    S. N. Kim, J. Kim, H. Y. Kim, H.Y. Cho and W. S. Ahn, Catal. Today, 204, 85 (2013).CrossRefGoogle Scholar
  12. 12.
    Y. G. Chung, J. Camp, M. Haranczyk, B. J. Sikora, W. Bury, V. Krungleviciute, T. Yildirim, O.K. Farha, D. S. Sholl and R.Q. Snurr, Chem. Mater., 26, 21 (2014)Google Scholar
  13. 13.
    R. Babu, A. C. Kathalikkattil, R. Roshan, J. Tharun, D. W. Kim and D. W. Park, Green Chem., 18, 232 (2016).CrossRefGoogle Scholar
  14. 14.
    R. Babu, R. Roshan, A. C. Kathalikkattil, D. W. Kim and D.W. Park, ACS Appl. Mater. Interfaces, 8, 33723 (2016).CrossRefPubMedGoogle Scholar
  15. 15.
    A. C. Kathalikkattil, D.W. Kim, J. Tharun, H.-G. Soek, R. Roshan and D.W. Park, Green Chem., 16, 1607 (2014).CrossRefGoogle Scholar
  16. 16.
    W. J. Son, J. Kim, J. Kim and W. S. Ahn, Chem. Commun., 47, 6336 (2008).CrossRefGoogle Scholar
  17. 17.
    Y. Chen, J. Xiao, D. Lv, T. Huang, F. Xu, X. Sun, H. Xi, Q. Xia and Z. Li, Chem. Eng. Sci., 158, 539 (2017).CrossRefGoogle Scholar
  18. 18.
    J. Tharun, G. Mathai, A. C. Kathalikkattil, R. Roshan, Y. S. Won, S. J. Cho, J. S. Chang and D. W. Park, ChemPlusChem, 80, 715 (2015).CrossRefGoogle Scholar
  19. 19.
    R. Babu, A. C. Kathalikkattil, R. Roshan, J. Tharun, D. W. Kim and D. W. Park, Green Chem., 18, 232 (2016).CrossRefGoogle Scholar
  20. 20.
    C. A. Bauer, T.V. Timofeeva, T. B. Settersten, B. D. Patterson, V. H. Liu, B.A. Simmons and M. D. Allendorf, J. Am. Chem. Soc., 129, 7136 (2007).CrossRefPubMedGoogle Scholar
  21. 21.
    Y. Xie, Z. Zhang, T. Jiang, J. He, B. Han, T. Wu and K. Ding, Angew. Chem. Int. Ed., 46, 7255 (2007).CrossRefGoogle Scholar
  22. 22.
    P. B. Webb, M. F. Sellin, T. E. Kunene, S. Williamson, A.M.Z. Slawin and D. J. Cole-Hamilton, J. Am. Chem. Soc., 125, 15577 (2003).CrossRefPubMedGoogle Scholar
  23. 23.
    K. R. Roshan, G. Mathai, J. Kim, J. Tharun, G.A. Park and D.W. Park, Green Chem., 14, 2933 (2012).CrossRefGoogle Scholar
  24. 24.
    G. W. Coates and D. R. Moore, Angew. Chem. Int. Ed., 43, 6618 (2004).CrossRefGoogle Scholar
  25. 25.
    J. J. Peng and Y. Deng, New J. Chem., 25, 639 (2001).CrossRefGoogle Scholar
  26. 26.
    S. H. Lo, C. H. Chien, Y. L. Lai, C. C. Yang, J. J. Lee, D. S. Raja and C. H. Lin, J. Mater. Chem. A., 1, 324 (2013).CrossRefGoogle Scholar
  27. 27.
    D. J. Darensbourg and S. B. Fitch, Inorg. Chem., 47, 11868 (2008).CrossRefPubMedGoogle Scholar
  28. 28.
    P. P. Pescarmona and M. Taherimehr, Catal. Sci. Technol., 2, 2169 (2012).CrossRefGoogle Scholar
  29. 29.
    T. Lescouet, C. Chizallet and D. Farrusseng, ChemCatChem, 4, 1725 (2012).CrossRefGoogle Scholar
  30. 30.
    S. N. Kim, J. Kim, H. Y. Kim, H. Y. Cho and W. S. Ahn, Catal. Today, 204, 85 (2013).CrossRefGoogle Scholar
  31. 31.
    J. Tharun, G. Mathai, A. C. Kathalikkattil, R. Roshan, Y. S. Won, S. J. Cho, J. S. Chang and D. W. Park, ChemPlusChem, 80, 715 (2015).CrossRefGoogle Scholar

Copyright information

© Korean Institute of Chemical Engineers, Seoul, Korea 2018

Authors and Affiliations

  1. 1.Division of Chemical and Biomolecular EngineeringPusan National UniversityBusanKorea

Personalised recommendations