Skip to main content
Log in

Production of high purity rare earth mixture from iron-rich spent fluid catalytic cracking (FCC) catalyst using acid leaching and two-step solvent extraction process

  • Separation Technology, Thermodynamics
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

Acid leaching and a two-step solvent extraction procedure were developed to produce high purity mixture of La and Ce from iron-rich spent FCC catalyst discharged from Dzung Quat refinery (Vietnam). Acid leaching of the spent catalyst with 2M HNO3 and a solid-to-liquid ratio of 1/3 at 80 °C in 1 h dissolved almost 90% of La while 12% of Al and 25% of Fe were transferred to the leachate. The extraction of RE metals and main impurities such as Al and Fe by a mixture of di-2-ethylhexyl phosphoric acid (D2EHPA) and tributyl phosphate (TBP) was investigated. Experiments showed that it was necessary to remove Fe before extracting RE and the optimum extraction conditions for a high recovery of RE while 0% of Al extraction were pH-1, contact time=10min, and D2EHPA/TBP volume ratio= 4: 1. At these conditions, the extraction yields of La(III) and Ce(III) were 72% and 89%, respectively. A two-step solvent extraction was developed to achieve a high purity of RE mixture, which included (1) the removal of impurity Fe by 25% (v/v) diisooctyl phosphinic acid (DiOPA) in n-octane for 140 min, (2) the extraction of rare earths by a mixture of di-2-ethylhexyl phosphoric acid (D2EHPA) and tributyl phosphate (TBP) in n-octane for 10 min without the need for adjusting the pH of the leaching solution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. Chiranjeevi, N. Ravichander, D. T. Gokak, V. Ravikumar and N. V. Choudary, Petrol. Sci. Technol., 32, 470 (2014).

    Article  CAS  Google Scholar 

  2. M. I. M. Chou, L. M. Chen and S. F. J. Chou, Int. J. Environ. Sust., 8, 19 (2013).

    Google Scholar 

  3. F. Ferella, V. Innocenzi and F. Maggiore, Res. Conserv. Recy., 108, 10 (2016).

    Article  Google Scholar 

  4. C. T. Nguyen, H. M. Nguyen and M. Q. Ta, PetroVietnam J., 11, 43 (2013).

    Google Scholar 

  5. X. Gao and W. T. Owens, US Patent, US20120156116A1 (2012).

    Google Scholar 

  6. A. Jordens, Y. P. Cheng and K. E. Waters, Miner. Eng., 41, 97 (2013).

    Article  CAS  Google Scholar 

  7. K. Binnemans, P. T. Jones, B. Blanpain, T. V. Gerven, Y. Yang, A. Waltone and M. Buchertf, J. Clean. Prod., 51, 1 (2013).

    Article  CAS  Google Scholar 

  8. P. F. Duby, Kirk-Othmer Encyclopedia of Chemical Technology, John Wiley & Sons Inc. (2000).

    Google Scholar 

  9. L. Li, S. Xu, Z. Ju and F. Wu, Hydrometallurgy, 100, 41 (2009).

    Article  CAS  Google Scholar 

  10. P. Zhang, T. Yokoyama, O. Itabashi, Y. Wakui, T. M. Suzuki and K. Inoue, J. Power Sources, 77, 116 (1999).

    Article  CAS  Google Scholar 

  11. L. Pietrelli, B. Bellomo, D. Fontana and M. R. Montereali, Hydrometallurgy, 66, 135 (2002).

    Article  CAS  Google Scholar 

  12. P. Zhang, T. Yokoyama, O. Itabashi, Y. Wakui, T. M. Suzuki and K. Inoue, Hydrometallurgy, 50, 61 (1998).

    Article  CAS  Google Scholar 

  13. Y. Jiang, A. Shibayama, K. Liu and T. Fujita, Hydrometallurgy, 76, 1 (2005).

    Article  CAS  Google Scholar 

  14. Y. Jiang, A. Shibayama, K. Liu and T. Fujita, Can. Metall. Q., 43, 431 (2004).

    Article  CAS  Google Scholar 

  15. C. H. Lee, H. Y. Yen, C. H. Liao, S. R. Popuri, E. I. Cadogan and C. J. Hsu, J. Mater. Cycles Waste Manage., 19, 102 (2017).

    Article  CAS  Google Scholar 

  16. C. H. Lee, Y. J. Chen, C. H. Liao, S. R. Popuri, S. L. Tsai and C. E. Hung, Metall. Mater. Trans. A., 44, 5825 (2013).

    Article  CAS  Google Scholar 

  17. V. Innocenzi, F. Ferella, I. D. Michelis and F. Vegliò, J. Ind. Eng. Chem., 24, 92 (2015).

    Article  CAS  Google Scholar 

  18. Z. Zhao, Z. Qiu, J. Jang, S. Lu, L. Cao, W. Zhang and Y. Xu, Hydrometallurgy, 167, 183 (2016).

    Article  Google Scholar 

  19. M. Wenzel, K. Schnaars, N. Kelly, L. Götzke, M. S. Robles, K. Kretschmer, P. N. Le, D. T. Tung, N. H. Luong, N. A. Duc, D. V. Sy, K. Gloe and J. J. Weigand, Rare Metal Technology, John Wiley & Sons Inc., NJ (2016).

    Google Scholar 

  20. ASTM D7085, Standard Guide for Determination of Chemical Elements in Fluid Catalytic Cracking Catalysts by X-ray Fluorescence Spectrometry (XRF) (2010).

    Google Scholar 

  21. J. Wang, Y. Xu, L. Wang, L. Zhao, Q. Wang, D. Cui, Z. Long and X. Huang, J. Environ. Chem. Eng., 5, 3711 (2017).

    Article  CAS  Google Scholar 

  22. T. Moeller, The Chemistry of the Lanthanides, Reinhold Publishing, New York (1963).

    Google Scholar 

  23. C. Xia, A review on iron separation in rare earths hydrometallurgy using precipitation and solvent extractions method, I. M. London, J. R. Goode, G. Moldoveanu, M. S. Rayat Eds., Canad. Institute of Mining, Metallurgy and Petroleum, Westmont (2013).

  24. C. K. Gupta and N. Krishnamurthy, Extractive metallurgy of rare earths, CRC Press, Florida (2005).

    Google Scholar 

  25. J. W. Roddy, C. F. Coleman and S. Arai, J. Inorg. Nucl. Chem., 33, 1099 (1971).

    Article  CAS  Google Scholar 

  26. T. Sato, T. Nakamura and M. Ikeno, Hydrometallurgy, 15, 209 (1985).

    Article  CAS  Google Scholar 

  27. H. Matsuyama, Y. Miyake, Y. Izumo and M. Teramoto, Hydrometallurgy, 24, 37 (1990).

    Article  CAS  Google Scholar 

  28. M. S. Silberberg, Principles of general chemistry, McGraw-Hill, U. S. A. (2010).

    Google Scholar 

  29. G. Avgouropoulos, Environmental Catalysis over Gold-Based Materials, RSC (2013).

    Book  Google Scholar 

  30. D. L. Reger, S. R. Goode and D. W. Ball, Chemistry: Principles and Practice, Brooks/Cole, U. S. A. (2010).

    Google Scholar 

  31. V. L. Snoeyink and D. Jenkins, Water Chemistry, John Wiley & Sons, New York (1980).

    Google Scholar 

  32. E. Y. Seo, Y. W. Cheong, G. J. Yim, K. W. Min and J. N. Geroni, Catena, 148, 11 (2017).

    Article  CAS  Google Scholar 

  33. J. Tian, R. Chi, G. Zhu, S. Xu and Z. Zhang, Nonferrous Met., 2, 57 (2000).

    Google Scholar 

  34. K. Liu, Y. Wang, M. Wei, X. Tang and P. Zhang, China Patent, CN 107130120A (2017).

    Google Scholar 

  35. M. Maeda, H. Narita, C. Tokoro, M. Tanaka, R. Motokawa, H. Shiwaku and T. Yaita, Sep. Purif. Technol., 177, 176 (2017).

    Article  CAS  Google Scholar 

  36. M. Liu and Y. Zhou, The Chinese J. Nonferrous Met., 15(10), 1648 (2005).

    CAS  Google Scholar 

  37. S. Yu and J. Chen, Hydrometallurgy, 22, 183 (1989).

    Article  CAS  Google Scholar 

  38. A. F. Osaka, I. M. Nara and M. T. Osaka, US Patent, US 4582691A (1986).

    Google Scholar 

  39. D. Nucciarone, B. Jakovljevic, B. A. Fir Medeiros, J. Hill-house, M. DePalo, K. C. Sole, P. M. Cole, J. S. Preston, D. J. Robinson (Eds.), Proceedings of the International Solvent Extraction Conference ISEC, 1, 402 (2002).

    Google Scholar 

  40. L. Lin-yan, X. Sheng-ming, J. Zhong-jun, Z. Zhang, L. Fu-hui and L. Guo-bao, Trans. Nonferrous Met. Soc. China, 20, 205 (2010).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Le-Phuc Nguyen or Jan J. Weigand.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nguyen, LP., Pham, Y.T.H., Ngo, P.T. et al. Production of high purity rare earth mixture from iron-rich spent fluid catalytic cracking (FCC) catalyst using acid leaching and two-step solvent extraction process. Korean J. Chem. Eng. 35, 1195–1202 (2018). https://doi.org/10.1007/s11814-018-0022-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-018-0022-z

Keywords

Navigation