Korean Journal of Chemical Engineering

, Volume 35, Issue 5, pp 1185–1194 | Cite as

A simulation study on selection of optimized process for azeotropic separation of methanol and benzene: Internal heat integration and economic analysis

  • Faraz Qasim
  • Jae Sun Shin
  • Sang Jin Park
Separation Technology, Thermodynamics


This work provides an insight into the separation of azeotropic mixtures by using two different techniques: pressure swing distillation and extractive distillation. Both methods are used to separate an azeotropic mixture of methanol and benzene. This mixture exhibits a minimum boiling azeotrope at temperature 57.97 °C and pressure 1 bar with mole fractions of 0.61 and 0.39 for methanol and benzene, respectively. However, the azeotropic point in methanol and benzene mixture is pressure sensitive, which can be shifted by changing pressure with a process called pressure swing distillation. Extractive distillation with suitable solvent is another method to separate such kind of mixture. Both methods are rigorously simulated and optimized for minimum heat duties. Internal heat integration is applied too for increasing energy efficiency. New optimization techniques are carried out with process simulator Aspen HYSYS V8.4 and results reveal the best method for separation of methanol and benzene azeotropic mixture.


Azeotrope Pressure Swing Distillation Extractive Distillation Internal Heat Integration Solvent 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    G. Soave and J. A. Feliu, Appl. Therm. Eng., 22(8), 889 (2002).CrossRefGoogle Scholar
  2. 2.
    H. K. Engelien and S. Skogestad, Chem. Eng. Processing: Process Intensification, 44(8), 819 (2005).CrossRefGoogle Scholar
  3. 3.
    S. Mandal and V.G. Pangarkar, J. Membr. Sci., 201(1), 175 (2002).CrossRefGoogle Scholar
  4. 4.
    B. Kotai, P. Lang and G. Modla, Chem. Eng. Sci., 62(23), 6816 (2007).CrossRefGoogle Scholar
  5. 5.
    W. L. Luyben, Chem. Eng. Res. Design, 106, 253 (2016).CrossRefGoogle Scholar
  6. 6.
    L. Laroche, H.W. Andersen, M. Morari and N. Bekiaris, Canadian J. Chem. Eng., 69(6), 1302 (1991).CrossRefGoogle Scholar
  7. 7.
    S. P. Shirsat, S.D. Dawande and S. S. Kakade, Korean J. Chem. Eng., 12(30), 2163 (2013).CrossRefGoogle Scholar
  8. 8.
    E. Lladosa, J.B. Montón, M.C. Burguet and R. Munoz, Fluid Phase Equilib., 255(1), 62 (2007).CrossRefGoogle Scholar
  9. 9.
    M.F. De Figueiredo, K.D. Brito, W.B. Ramos, L.G. Sales Vasconcelos and R. P. Brito, Chem. Eng. Commun., 202(9), 1191 (2015).CrossRefGoogle Scholar
  10. 10.
    M. F. Doherty and M. F. Malone, Conceptual design of distillation systems, McGraw-Hill Science/Engineering/Math (2001).Google Scholar
  11. 11.
    J.R. Phimister and W.D. Seider, Ind. Eng. Chem. Res., 39(1), 122 (2000).CrossRefGoogle Scholar
  12. 12.
    F. Qasim, J. S. Shin, S. J. Cho and S. J. Park, Sep. Sci. Technol., 51(2), 316 (2016).CrossRefGoogle Scholar
  13. 13.
    J.-U. Repke, A. Klein, D. Bogle and G. Wozny, Chem. Eng. Res. Design, 85(4), 492 (2007).CrossRefGoogle Scholar
  14. 14.
    G. Modla, P. Lang and F. Denes, Chem. Eng. Sci., 65(2), 870 (2010).CrossRefGoogle Scholar
  15. 15.
    G. Modla, Ind. Eng. Chem. Res., 50(13), 8204 (2011).CrossRefGoogle Scholar
  16. 16.
    G. Modla, Computers Chem. Eng., 35(11), 2401 (2011).CrossRefGoogle Scholar
  17. 17.
    J. P. Knapp and M.F. Doherty, Ind. Eng. Chem. Res., 31(1), 346 (1992).CrossRefGoogle Scholar
  18. 18.
    W. L. Luyben, Ind. Eng. Chem. Res., 47(8), 2696 (2008).CrossRefGoogle Scholar
  19. 19.
    J. F. Mulia-Soto and A. Flores-Tlacuahuac, Comput. Chem. Eng., 35(8), 1532 (2011).CrossRefGoogle Scholar
  20. 20.
    G. Modla and P. Lang, Chem. Eng. Sci., 63(11), 2856 (2008).CrossRefGoogle Scholar
  21. 21.
    G. Modla and P. Lang, Ind. Eng. Chem. Res., 49(8), 3785 (2010).CrossRefGoogle Scholar
  22. 22.
    W. L. Luyben, Ind. Eng. Chem. Res., 44(15), 5715 (2005).CrossRefGoogle Scholar
  23. 23.
    A.M. Fulgueras, J. Poudel, D.S. Kim and J. Cho, Korean J. Chem. Eng., 33(1), 46 (2016).CrossRefGoogle Scholar
  24. 24.
    Q. Sun, C. Pan and X. Yan, Korean J. Chem. Eng., 30(3), 518 (2013).CrossRefGoogle Scholar
  25. 25.
    W. L. Luyben, Computers Chem. Eng., 50, 1 (2013).CrossRefGoogle Scholar
  26. 26.
    R. M and W. Wa, Ind. Eng. Chem., 31, 2079 (1939).Google Scholar
  27. 27.
    Y. Wang, P. Cui, Y. Ma and Z. J. Zhang, Chem. Technol. Biotechnol., 90(8), 1463 (2015).CrossRefGoogle Scholar
  28. 28.
    W. L. Luyben and I.-L. Chien, Design and control of distillation systems for separating azeotropes, John Wiley & Sons (2011).Google Scholar
  29. 29.
    S. Yuan, W. Yang, H. Yin and Z. J. Chen, Chem. Technol. Biotechnol., 88(8), 1523 (2013).CrossRefGoogle Scholar
  30. 30.
    M. Seiler, W. Arlt, H. Kautz and H. Frey, Fluid Phase Equilib., 201(2), 359 (2002).CrossRefGoogle Scholar
  31. 31.
    J. Forehand, G. Dooly and S. Moldoveanu, J. Chromatography A, 898(1), 111 (2000).CrossRefGoogle Scholar
  32. 32.
    A.-I. Yeh, L. Berg and K. J. Warren, Chem. Eng. Commun., 68(1), 69 (1988).CrossRefGoogle Scholar
  33. 33.
    J. P. Knapp and M.F. Doherty, AIChE J., 40(2), 243 (1994).CrossRefGoogle Scholar
  34. 34.
    Z. Zhang, L. Liu, W. Li and L. Chen, CIESC J., 9, 023 (2011).Google Scholar
  35. 35.
    P. Lang, H. Yatim, P. Moszkowicz and M. Otterbein, Computers Chem. Eng., 18(11), 1057 (1994).CrossRefGoogle Scholar
  36. 36.
    P. Langston, N. Hilal, S. Shingfield and S. Webb, Chem. Eng. Process.: Process Intensification, 44(3), 345 (2005).CrossRefGoogle Scholar
  37. 37.
    Z. Lei, H. Wang, R. Zhou and Z. Duan, Chem. Eng. J., 87(2), 149 (2002).CrossRefGoogle Scholar
  38. 38.
    C. Black and D. Ditsler, Dehydration of aqueous ethanol mixtures by extractive distillation (1972).Google Scholar
  39. 39.
    N. Hilal, G. Yousef and P. Langston, Chem. Eng. Process.: Process Intensification, 41(8), 673 (2002).CrossRefGoogle Scholar
  40. 40.
    Z. Olujic, F. Fakhri, A. De Rijke, J. De Graauw and P. J. Jansens, J. Chem. Technol. Biotechnol., 78(2-3), 241 (2003).CrossRefGoogle Scholar
  41. 41.
    R. S. Mah, J. Nicholas and R. B. Wodnik, AIChE J., 23(5), 651 (1977).CrossRefGoogle Scholar
  42. 42.
    J. Schmal, H. J. Van Der Kooi, A. De Rijke, Ž. Olujic and P. J. Jansens, Chem. Eng. Res. Design, 84(5), 374 (2006).CrossRefGoogle Scholar
  43. 43.
    G. Liu, Z. Chen, K. Huang, Z. Shi, H. Chen and S. Wang, Asia-Pacific J. Chem. Eng., 6(3), 327 (2011).CrossRefGoogle Scholar
  44. 44.
    K. Huang, L. Shan, Q. Zhu and J. Qian, Appl. Therm. Eng., 28(8), 923 (2008).CrossRefGoogle Scholar
  45. 45.
    K. Horiuchi, K. Yanagimoto, K. Kataoka, M. Nakaiwa, K. Iwakabe and K. Matsuda, J. Chem. Eng. Japan, 41(8), 771 (2008).CrossRefGoogle Scholar
  46. 46.
    M.B. D’amore, L. E. Manzer, E. S. Miller Jr. and J.P. Knapp, Process for making isooctenes from dry 1-butanol, Google Patents (2015).Google Scholar
  47. 47.
    F. Michael and P. Jeffrey, Distillation, Azeotropic and Extractive, Ruthven, DM (Ed.) (1997).Google Scholar
  48. 48.
    H. Renon and J. M. Prausnitz, AIChE J., 14(1), 135 (1968).CrossRefGoogle Scholar
  49. 49.
    G. Scatchard and L. B. Ticknor, J. Am. Chem. Soc., 74(15), 3724 (1952).CrossRefGoogle Scholar

Copyright information

© Korean Institute of Chemical Engineers, Seoul, Korea 2018

Authors and Affiliations

  1. 1.Dongguk UniversitySeoulKorea

Personalised recommendations