Advertisement

Korean Journal of Chemical Engineering

, Volume 35, Issue 5, pp 1065–1072 | Cite as

Effect of slag viscosity model on transient simulations of wall slag flow in an entrained coal gasifier

  • Mukyeong Kim
  • Insoo Ye
  • Changkook Ryu
Transport Phenomena
  • 78 Downloads

Abstract

The viscosity-temperature relation of slag determines its behavior inside an entrained flow coal gasifier. However, existing prediction models give results with large variations among them. We investigated the influence of different viscosity models in the prediction of the steady and transient behaviors of slag flow on the wall of a gasifier undergoing gas temperature changes. Five viscosity models adopted showed differences in the temperature (T250) at 25 Pa∙s as large as 97 K for the selected slag composition, which was used as the interface temperature between the solid and liquid slag. When the predicted viscosity and corresponding T250 increased, the solid slag became thicker and the dynamic response of the slag became slower. In contrast, the differences in the liquid slag thickness were small. The influence of T250 predicted was dominant, compared to that of different viscosity curves of the liquid slag.

Keywords

Ash Deposition Coal Gasification Entrained Gasifier Numerical Model Slag Layer 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    L.D. Smoot and P. J. Smith, Coal combustion and gasification, Springer Science & Business Media (2013).Google Scholar
  2. 2.
    T. K. Kaneko, J. P. Bennett and S. Sridhar, J. Am. Ceram. Soc., 94, 4507 (2011).CrossRefGoogle Scholar
  3. 3.
    G. N. Shannon, P. L. Rozelle, S.V. Pisupati and S. Sridhar, Fuel Process. Technol., 89, 1379 (2008).CrossRefGoogle Scholar
  4. 4.
    W. Song, Y. Sun, Y. Wu, Z. Zhu and S. Koyama, AIChE J., 57, 801 (2011).CrossRefGoogle Scholar
  5. 5.
    C. Higman and S. Tam, Chemical Reviews, 114, 1673 (2013).CrossRefGoogle Scholar
  6. 6.
    M. A. Duchesne, A. Macchi, D.Y. Lu, R.W. Hughes, D. McCalden and E. J. Anthony, Fuel Process. Technol., 91, 831 (2010).CrossRefGoogle Scholar
  7. 7.
    M. Oh, D. Brooker, E. De Paz, J. Brady and T. Decker, Fuel Process. Technol., 44, 191 (1995).CrossRefGoogle Scholar
  8. 8.
    S. Vargas, Straw and coal ash rheology, Department of Chemical Engineering, Technical University of Denmark (2001).Google Scholar
  9. 9.
    J. Wang, H. Liu, Q. Liang and J. Xu, Fuel Process. Technol., 106, 704 (2013).CrossRefGoogle Scholar
  10. 10.
    K.C. Mills, L. Yuan and R.T. Jones, J. South. Afr. Inst. Min. Metall., 111, 649 (2011).Google Scholar
  11. 11.
    M. Seggiani, Fuel, 77, 1611 (1998).CrossRefGoogle Scholar
  12. 12.
    S.Z. Yong and A. Ghoniem, Fuel, 97, 457 (2012).CrossRefGoogle Scholar
  13. 13.
    D. Bi, Q. Guan, W. Xuan and J. Zhang, Fuel, 150, 565 (2015).CrossRefGoogle Scholar
  14. 14.
    R. F. Monaghan and A. F. Ghoniem, Fuel, 91, 61 (2012).CrossRefGoogle Scholar
  15. 15.
    G. Urbain, Trans. J. Br. Ceram. Soc., 80, 139 (1981).Google Scholar
  16. 16.
    W.T. Reid, External corrosion and deposits: Boilers and gas turbines, Fuel and Energy Science Series; American Elsevier Publishing Co., New York (1971).Google Scholar
  17. 17.
    J. Watt and F. Fereday, J. Inst. Fuel, 42, 99 (1969).Google Scholar
  18. 18.
    G. Browning, G. Bryant, H. Hurst, J. Lucas and T. Wall, Energy Fuel, 17, 731 (2003).CrossRefGoogle Scholar
  19. 19.
    D. P. Kalmanovitch and M. Frank, An effective model of viscosity for ash deposition phenomena, Proceedings of mineral matter and ash deposition from coal, 22 (1988).Google Scholar
  20. 20.
    K. Mills, Estimation of physicochemical properties of coal slags and ashes, ACS Publications (1986).CrossRefGoogle Scholar
  21. 21.
    S. Vargas, F. Frandsen and K. Dam-Johansen, Elsam-idemitsu kosan cooperative research project: Performance of viscosity models for hightemperature coal ashes, Department of Chemical Engineer-ing, Technical University of Denmark, CHEC Report (1997).Google Scholar
  22. 22.
    A. Kondratiev and E. Jak, Fuel, 80, 1989 (2001).CrossRefGoogle Scholar
  23. 23.
    H. Saxén and X. Zhang, Neural-network based model of blast furnace slag viscosity, Proceedings of the International Conference on Engineering Application of Neural Networks, 167 (1997).Google Scholar
  24. 24.
    M.A. Duchesne, A. M. Bronsch, R.W. Hughes and P. J. Masset, Fuel, 114, 38 (2013).CrossRefGoogle Scholar
  25. 25.
    M. Seggiani, Fuel, 78, 1121 (1999).CrossRefGoogle Scholar
  26. 26.
    S.Z. Yong, M. Gazzino and A. Ghoniem, Fuel, 92, 162 (2012).CrossRefGoogle Scholar
  27. 27.
    I. Ye and C. Ryu, Fuel, 150, 64 (2015).CrossRefGoogle Scholar
  28. 28.
    M. Kim, I. Ye and C. Ryu, Fuel, 196, 532 (2017).CrossRefGoogle Scholar
  29. 29.
    C. Kim, R. Kim, Z. Wu and C. Jeon, Korean J. Chem. Eng., 33, 1767 (2016).CrossRefGoogle Scholar
  30. 30.
    H. Lee, J. Lee, Y. Joo, M. Oh and C. Lee, Appl. Energy, 131, 425 (2014).CrossRefGoogle Scholar
  31. 31.
    Z. Yang, Y. Xue, Y. Wu, Z. Wang, Z. Li and W. Ni, Chem. Eng. Process. Process Intensif., 74, 131 (2013).CrossRefGoogle Scholar
  32. 32.
    K.C. Mills and J.M. Rhine, Fuel, 68, 193 (1989).CrossRefGoogle Scholar
  33. 33.
    K.C. Mills and J.M. Rhine, Fuel, 68, 904 (1989).CrossRefGoogle Scholar
  34. 34.
    B. Zhang, Z. Shen, D. Han, Q. Liang, J. Xu and H. Liu, Appl. Therm. Eng., 112, 1178 (2017).CrossRefGoogle Scholar
  35. 35.
    I. Ye, J. Oh and C. Ryu, Energies, 8, 3370 (2015).CrossRefGoogle Scholar

Copyright information

© Korean Institute of Chemical Engineers, Seoul, Korea 2018

Authors and Affiliations

  1. 1.School of Mechanical EngineeringSungkyunkwan UniversitySuwonKorea

Personalised recommendations