Skip to main content
Log in

Hydrodynamics and design of gas distributor in large-scale amine absorbers using computational fluid dynamics

  • Transport Phenomena
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

A gas phase three-dimensional (3D) computational fluid dynamics (CFD) model was developed to investigate the hydrodynamics of gas distributors used in an amine absorber with a diameter of 3.2 m. A standard gas inlet, tubular injectors with short, medium and long lengths, and a Schoepentoeter were considered as feed systems of the gas distributors. The pressure drop, dead-area ratio and coefficient of distribution at the packing entry were used as the performance indexes of the gas distributors. The down-pipe as a liquid collector exhibited a lower dead-area ratio when compared with that of the down-comer. The tubular gas injector with a short length reduced the dead-area ratio and the gas maldistribution. The Schoepentoeter was associated with the lowest pressure drop, dead-area ratio, and coefficient of distribution among the gas distributors. The uniformity of gas distribution was enhanced by 25% in the Schoepentoeter when compared to that of the tubular gas injector.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. K. Mondal, H. K. Balsora and P. Varshney, Energy, 46, 431 (2012).

    Article  CAS  Google Scholar 

  2. M. Wang, A. Lawal, P. Stephenson, J. Sidders and C. Ramshaw, Chem. Eng. Res. Des., 89, 1609 (2011).

    Article  CAS  Google Scholar 

  3. J. H. Lee, N. S. Kwak, I. Y. Lee, K. R. Jang, D. W. Lee, S. G. Jang, B. K. kim and J.-G. Shim, Korean J. Chem. Eng., 32, 800 (2015).

    Article  CAS  Google Scholar 

  4. M. Zaman and J. H. Lee, Korean J. Chem. Eng., 30, 1497 (2013).

    Article  CAS  Google Scholar 

  5. A. Aroonwilas, A. Chakma, P. Tontiwachwuthikul and A. Veawab, Chem. Eng. Sci., 58, 4037 (2003).

    Article  CAS  Google Scholar 

  6. M. Wehrli, S. Hirschberg and R. Schweizer, Chem. Eng. Res. Des., 81, 116 (2003).

    Article  CAS  Google Scholar 

  7. T. Petrova, N. Vaklieva-Bancheva, S. Darakchiev and R. Popov, Clean Technol. Environ., 16, 1381 (2014).

    Article  CAS  Google Scholar 

  8. A. Gorak and Z. Olujic, Distillation: Equipment and Processes, Academic Press, London (2014).

    Google Scholar 

  9. Ž. Olujić, A. Mohamed Ali and P. J. Jansens, Chem. Eng. Process., 43, 465 (2004).

    Article  Google Scholar 

  10. J. F. Billingham, D. P. Bonaquist and M. J. Lockett, Institution of Chemical Engineers Symposium Series, 142, 841 (1997).

    CAS  Google Scholar 

  11. M. T. Dhotre and J. B. Joshi, Can. J. Chem. Eng., 81, 677 (2003).

    Article  CAS  Google Scholar 

  12. T. Petrova, K. Semkov and C. Dodev, Chem. Eng. Process., 42, 931 (2003).

    Article  CAS  Google Scholar 

  13. M.T. Dhotre and J. B. Joshi, Chem. Eng. J., 125, 149 (2007).

    Article  CAS  Google Scholar 

  14. D. P. Edwards, K.R. Krishnamurthy and R.W. Potthoff, Chem. Eng. Res. Des., 77, 656 (1999).

    Article  CAS  Google Scholar 

  15. R. Darakchiev and C. Dodev, Chem. Eng. Process., 41, 385 (2002).

    Article  CAS  Google Scholar 

  16. C. Stemich and L. Spiegel, Chem. Eng. Res. Des., 89, 1392 (2011).

    Article  CAS  Google Scholar 

  17. G. Mosca, P. Schaeffer and B. Griepsma, Sulzer Technical Review, 3, 6 (2010).

    Google Scholar 

  18. J. Kim, D. A. Pham and Y.-I. Lim, Chem. Eng. Res. Des., 121, 99 (2017).

    Article  CAS  Google Scholar 

  19. A. Mohamed Ali, P. J. Jansens and Ž. Olujić, Chem. Eng. Res. Des., 81, 108 (2003).

    Article  Google Scholar 

  20. T. Zarei, E. Abedini, R. Rahimi and J. Khorshidi, Korean J. Chem. Eng., 34, 969 (2017).

    Article  CAS  Google Scholar 

  21. S. Chen, Y. Fan, Z. Yan, W. Wang, X. Liu and C. Lu, Chem. Eng. Sci., 153, 58 (2016).

    Article  CAS  Google Scholar 

  22. S. I. Ngo, Y.-I. Lim, B.-H. Song, U.-D. Lee, J.-W. Lee and J.-H. Song, Powder Technol., 275, 188 (2015).

    Article  CAS  Google Scholar 

  23. S. I. Ngo, Y.-I. Lim, M.-H. Hahn, J. Jung and Y.-H. Bang, Comput. Chem. Eng., 103, 58 (2017).

    Article  CAS  Google Scholar 

  24. H. H. Pham, Y.-i. Lim, C.-H. Cho and Y.-H. Bang, Chem. Eng. Res. Des., 128, 192 (2017).

    Article  CAS  Google Scholar 

  25. T. H. Shih, W.W. Liou, A. Shabbir, Z. Yang and J. Zhu, Comput. Fluids, 24, 227 (1995).

    Article  Google Scholar 

  26. M. I. Kim, Y. Lee, B. W. Kim, D. H. Lee and W. S. Song, Korean J. Chem. Eng., 26, 359 (2009).

    Article  CAS  Google Scholar 

  27. Ž. Olujić, Chinese J. Chem. Eng., 19, 726 (2011).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Young-Il Lim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pham, H.H., Lim, YI., Han, S. et al. Hydrodynamics and design of gas distributor in large-scale amine absorbers using computational fluid dynamics. Korean J. Chem. Eng. 35, 1073–1082 (2018). https://doi.org/10.1007/s11814-018-0006-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-018-0006-z

Keywords

Navigation