Korean Journal of Chemical Engineering

, Volume 35, Issue 4, pp 890–899 | Cite as

Competitive biosorption of heavy metals from aqueous solutions onto Streptomyces rimosus

  • Radia Yous
  • Faroudja Mohellebi
  • Hakima Cherifi
  • Abdeltif Amrane
Environmental Engineering


The aim of this study is the simultaneous biosorption of Cd+2 and Ni+2 on a dead biomass, Streptomyces rimosus pretreated with NaOH (0,1 M). Kinetic tests were carried out for the binary mixture (cadmium-nickel) during 6 hours contact time to ensure that balance was reached. The amounts adsorbed at equilibrium were 22.8 mg Ni2+/g and 9.86 mg Cd2+/g biomass, respectively. The biosorption depends mainly by some parameters, such as the pH, the initial concentration of metal and the initial concentration of biomass. The isotherm of adsorption according to two models, Langmuir and Freundlich, was carried out in our study. The results of the kinetics of adsorption show that the experimental values are well represented by the kinetic model of pseudo-second order. This enables us to determine the behavior of these adsorbents with respect to a real industrial effluent.


Streptomyces rimosus Cadmium Nickel Wastewater Treatment Batch Biosorption 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. T. Ojedokun and O. Solomon Bello, Water Res. Ind., 13, 7 (2016).CrossRefGoogle Scholar
  2. 2.
    F. E. Okeimen and V. U. Onyenkpa, Biol. Waste, 29, 11 (2000).CrossRefGoogle Scholar
  3. 3.
    T. A. Arowolo, West Indian Med. J., 52, 63 (2004).Google Scholar
  4. 4.
    Y. H. Wu, L. Jiang, X. M. Mi, B. Li, and S. X. Feng, Korean J. Chem. Eng., 28(3), 895 (2011).CrossRefGoogle Scholar
  5. 5.
    D. P. Mungasavalli, T. Viraraghavan and Y. C. Jin, Colloids Surf. A, 301, 214 (2007).CrossRefGoogle Scholar
  6. 6.
    R. Kumar, N. R. Bishnoi Garima and K. Bishnoi, Chem. Eng. J., 135, 202 (2008).CrossRefGoogle Scholar
  7. 7.
    M. J. Melgar, J. Alonso and M. A. García, Sci. Total Environ., 385, 12 (2007).CrossRefGoogle Scholar
  8. 8.
    C. ChayTay, H. HooiLiew, Y. Chun-Yang, S. Abdul-Talib, S. Surif, A. Abdullah Suhaimi and S. Kong-Yong, Korean J. Chem. Eng., 28(3), 825 (2011).CrossRefGoogle Scholar
  9. 9.
    Q. Yu and P. Kaewsarn, Korean J. Chem. Eng., 16 (6), 753 (1999).CrossRefGoogle Scholar
  10. 10.
    M. I. Kefala, A. I. Zouboulis and K. A. Matis, Environ. Pollut., 104, 283 (1999).CrossRefGoogle Scholar
  11. 11.
    P. Kaewsarn and Q. Yu, Environ. Pollution, 112, 209 (2001).CrossRefGoogle Scholar
  12. 12.
    J. K. Park, Y. B. Jin and H. N. Chang, Biotechnol. Bioeng., 63, 116 (1999).CrossRefGoogle Scholar
  13. 13.
    A. Selatnia, M. Z. Bakhti, A. Madani, L. Kertous and Y. Mansouri, Hydrometallurgy, 75, 11 (2004).CrossRefGoogle Scholar
  14. 14.
    A. Selatnia, A. Madani, M. Z. Bakhti, L. Kertous, Y. Mansouri and R. Yous, Minerals Engineering, 17, 903 (2004).CrossRefGoogle Scholar
  15. 15.
    Z. Aksu and G. Donmez, Process Biochemistry, 41, 860 (2006).CrossRefGoogle Scholar
  16. 16.
    L. Leclerc and D. Tizerd, Microbiologie générale, Ed. Doin, Paris (1983).Google Scholar
  17. 17.
    A. Lehir, Abrégé de pharmacie galénique-formes pharmaceutiques, Ed. Masson, Paris (1981).Google Scholar
  18. 18.
    T. J. Butter, L. M. Evision, T. C. Hancock and F. C. Holland, Elution and electrolysis, 9th forum for appl., biotechnol, Gent., 2581 (1995).Google Scholar
  19. 19.
    B. Volesky, Biosorption for the next century, Chemical Engineering Department, McGill University, 3610 University St., Montreal, Canada H3A 2B2, June 20-23 (1999).CrossRefGoogle Scholar
  20. 20.
    I. Langmuir, J. Am. Chem. Soc., 40, 1361 (1918).CrossRefGoogle Scholar
  21. 21.
    H. Freundlich, J. Phys. Chem., 40, 1361 (1906).Google Scholar
  22. 22.
    W. Fritz and E. U. Schlünder, Chem. Eng. Sci., 36, 731 (1981).CrossRefGoogle Scholar
  23. 23.
    D. W. Hand, J. C. Crittenden and W. E. Thacker, J. Environ. Eng. Division, 109, 82 (1983).CrossRefGoogle Scholar
  24. 24.
    Mc Kay, G. Blair and H.S. Fidon, Sorption of metal ions by chitosan, In Immobilisation of ions by Bio-sorption, Ed. H. Eccles and S. Hunt, Ellis Horwood, Chichester, U.K., 59 (1986).Google Scholar
  25. 25.
    B. M. Van Vliet, W. J. Weber and H. Hozumi, Water Res., 14, 1719 (1980).CrossRefGoogle Scholar
  26. 26.
    A. P. Mattews and W. J. Weber, Chem. Eng. Commun., 25, 157 (1984).CrossRefGoogle Scholar
  27. 27.
    G. Mc Kay and M. J. Bino, Water Res., 22, 279 (1988).CrossRefGoogle Scholar
  28. 28.
    M. R. L. Glover, B. D. Young and A. W. Bryson, Int. J. Miner. Process., 30, 217 (1990).CrossRefGoogle Scholar
  29. 29.
    G. Mc Kay and S. J. Allen, C. H. Fuchman (Ed.), Proceedings of the Seminar on Peat as a Raw Material, Bord Na Mona Peat Research Center, Newbridge, Co Kildare, 124 (1990-1991).Google Scholar
  30. 30.
    W. J. Weber and J. C. Morris, Advances in water pollution research, Ind. Proc. Int. Conf. on water pollution Sym p, 2(162), 231 (1992).Google Scholar
  31. 31.
    McKay, G. and Victor J. P. Poots, J. Chem. Tech. Biotech., 30, 279 (1980).Google Scholar
  32. 32.
    K. Urano and H. Tachikawa, Ind. Eng. Chem. Res., 30, 1887 (1899).Google Scholar
  33. 33.
    S. B. K. Langergren, Svenska, Veternskapsakad Handlingar, 24(4), 1 (1898).Google Scholar
  34. 34.
    Y. S. Ho and G. Mac Kay, Process Biochemistry, 34, 451 (1983).CrossRefGoogle Scholar
  35. 35.
    Z. Aksu, Sep. Purif. Technol., 21, 285 (2001).CrossRefGoogle Scholar
  36. 36.
    E. Guibal, C. Roulph, P. L. Cloirec, Water Res., 26(8), 1139 (1992).CrossRefGoogle Scholar
  37. 37.
    G. Sautel, C. Roulph and P. Leclerc, Cadmium biofixation by Pseudomonas putidaBacteria, Récents progrès en Génie des procédés, 5, 203 (1991).Google Scholar
  38. 38.
    Fourest, E. Velosky, Applied Bioch. and Biotech., 67, 215 (1997).CrossRefGoogle Scholar
  39. 39.
    www.Periodni.Com, Minerals Engineering 17, 903 (2004), <>. [Consulté le 10/05/2017].Google Scholar
  40. 40.
    A. Kogej and A. Pavko, Chem. Biochem. Eng. Q., 18(1), 29 (2004).Google Scholar
  41. 41.
    Y. S. Ho and G. Mckay, Proc. Bioch., 38, 1047 (2003).CrossRefGoogle Scholar
  42. 42.
    S. Azizian, J. Colloid Interface Sci., 276, 47 (2004).CrossRefGoogle Scholar
  43. 43.
    Y. S. Ho, J. Hazard. Mater., B136, 681 (2006).CrossRefGoogle Scholar
  44. 44.
    N. Fiol, J. Poch and I. Villaescusa, Chemical Speciation and Bioavailability, 16, 25 (2004).CrossRefGoogle Scholar
  45. 45.
    IH. Ceribasi and U. Yetis, Environmental Engineering Department, 06531 Ankara, TurkeyWater SA Vol. 27, No. 1 January 2001, ISSN 0378-4738.Google Scholar
  46. 46.
    Z. Filipovic-Kovacevic, Food Technol. Biotechnol., 38(3), 211 (2000).Google Scholar
  47. 47.
    D. Sidiras, F. Batzias, E. Shroeder, R. Ranjan and M. Tsapis, Chem. Eng. J., 171, 883 (2011).CrossRefGoogle Scholar
  48. 48.
    M. I. Ansari and A. Malik, Bioresour. Technol., 98, 3149 (2007).CrossRefGoogle Scholar
  49. 49.
    Z. R. Holan and B. Volesky, Biotechnol. Bioengineering, 43, 1001 (1994).CrossRefGoogle Scholar
  50. 50.
    M. Torab-Mostaedi, M. Asadollahzadeh, A. Hemmati and A. Khosravi, J. Taiwan Inst. Chem. Eng., 44, 295 (2013).CrossRefGoogle Scholar
  51. 51.
    R. M. Karakagh, M. Chorom, H. Motamedi, Y. K. Kalkhajeh and S. Oustan, Ecohydrology Hydrobiology, 12(3), 191 (2012).CrossRefGoogle Scholar
  52. 52.
    T. Gutierrez, D. V. Biller, T. Shimmield and D. H. Green, Biometals, 25, 1185 (2012).CrossRefGoogle Scholar
  53. 53.
    A. Iyer, K. Mody and B. Jha, Mar. Pollut. Bull., 50, 340 (2005).CrossRefGoogle Scholar
  54. 54.
    J. Ha, A. Gélabert, A. M. Spormann and G. E. Brown, Geochim. Cosmochim. Acta, 74, (2010).Google Scholar
  55. 55.
    A. Lakzian, Asian J. Chem., 20, 6075 (2008).Google Scholar
  56. 56.
    J. A. M. Pérez, R. García-Ribera, T. Quesada, M. Aguilera, A. Ramos-Cormenzana and M. Monteoliva-Sánchez, World J. Microbiol. Biotechnol., 24, 2699 (2008).CrossRefGoogle Scholar

Copyright information

© Korean Institute of Chemical Engineers, Seoul, Korea 2018

Authors and Affiliations

  • Radia Yous
    • 1
  • Faroudja Mohellebi
    • 2
  • Hakima Cherifi
    • 1
  • Abdeltif Amrane
    • 3
  1. 1.Laboratoire des Biomatériaux et des Phénomènes de Transferts LBPTUniversité de MédéaMédéaAlgérie
  2. 2.Department of Chemical EngineeringNational Polytechnic SchoolBelfort, El-Harrach, AlgiersAlgeria
  3. 3.Ecole Nationale Supérieure de Chimie de RennesCNRS, UMR 6226Rennes Cedex 7France

Personalised recommendations