Korean Journal of Chemical Engineering

, Volume 35, Issue 4, pp 922–925 | Cite as

Stabilization of bio-oil over a low cost dolomite catalyst

  • Hannah Kim
  • Hoda Shafaghat
  • Jae-kon Kim
  • Bo Sung Kang
  • Jong-Ki Jeon
  • Sang-Chul Jung
  • In-Gu Lee
  • Young-Kwon Park
Environmental Engineering


A low cost alkaline catalyst of dolomite (CaMg(CO3)2) was used to stabilize acacia sawdust bio-oil mixed with methanol. The upgrading efficiency was evaluated in terms of the total acid number (TAN) and viscosity. A change in the dolomite calcination temperature from 700 to 900 °C led to a significant change in the TAN and viscosity of the methanol-added bio-oil. Dolomite activated at higher temperatures had larger amounts of active CaO and MgO species due to the enhanced decarboxylation of calcium and magnesium carbonates. An increase in the dolomite content (1-5 wt%) decreased the TAN value of bio-oil remarkably. A thermal aging test of the methanol-added bio-oil upgraded using dolomite (calcined at 900 °C) at 50 °C for 24 h was carried out by storing the bio-oil at 80 °C for one week. Although the TAN value increased after the aging process, it was still lower than the TAN of raw bio-oil. In addition, increasing the methanol content (10-30 wt%) decreased the TAN and viscosity of the bio-oil significantly.


Dolomite CaO/MgO Bio-oil Stabilization Bio-oil Aging TAN Viscosity 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    H. Shafaghat, P. S. Rezaei, D. Ro, J. Jae, B. S. Kim, S. C. Jung, B. H. Sung and Y. K. Park, J. Ind. Eng. Chem., 54, 447 (2017).CrossRefGoogle Scholar
  2. 2.
    E. H. Lee, R. S. Park, H. Kim, S. H. Park, S. C. Jung, J. K. Jeon, S. C. Kim and Y. K. Park, J. Ind. Eng. Chem., 37, 18 (2016).CrossRefGoogle Scholar
  3. 3.
    J. S. Cha, S. H. Park, S. C. Jung, C. Ryu, J. K. Jeon, M. C. Shin and Y. K. Park, J. Ind. Eng. Chem., 40, 1 (2016).CrossRefGoogle Scholar
  4. 4.
    Y. M. Kim, B. S. Kim, K. S. Chea, T. S. Jo, S. Kim and Y. K. Park, Appl. Chem. Eng., 27, 407 (2016).CrossRefGoogle Scholar
  5. 5.
    B. Aramburu, B. Valle, C. Santiviago, J. Bilbao and A.G. Gayubo, Chem. Eng. Trans., 37, 451 (2014).Google Scholar
  6. 6.
    S. Xiu and A. Shahbazi, Renewable Sustainable Energy Rev., 16, 4406 (2012).CrossRefGoogle Scholar
  7. 7.
    X. Li, R. Gunawan, C. Lievens, Y. Wang, D. Mourant, S. Wang, H. Wu, M. Garcia-Perez and C.-Z. Li, Fuel, 90, 2530 (2011).CrossRefGoogle Scholar
  8. 8.
    P. Weerachanchai, C. Tangsathitkulchai and M. Tangsathitkulchai, Korean J. Chem. Eng., 29, 182 (2011).CrossRefGoogle Scholar
  9. 9.
    M. M. R. Talukder, J. C. Wu, S. K. Lau, L. C. Cui, G. Shimin and A. Lim, Energy Fuels, 23, 1 (2009).CrossRefGoogle Scholar
  10. 10.
    B. Valle, B. Aramburu, C. Santiviago, J. Bilbao and A. G. Gayubo, Energy Fuels, 28, 6419 (2014).CrossRefGoogle Scholar
  11. 11.
    M. C. G. Albuquerque, I. Jiménez-Urbistondo, J. Santamaría-González, J. M. Mérida-Robles, R. Moreno-Tost, E. Rodríguez-Castellón, A. Jiménez-López, D. C. S. Azevedo, C. L. Cavalcante Jr. and P. Maireles-Torres, Appl. Catal. A., 334, 35 (2008).CrossRefGoogle Scholar
  12. 12.
    M. Kouzu, T. Kasuno, M. Tajika, S. Yamanaka and J. Hidaka, Appl. Catal. A., 334, 357 (2008).CrossRefGoogle Scholar
  13. 13.
    M. Kouzu, S.-y. Yamanaka, J.-s. Hidaka and M. Tsunomori, Appl. Catal. A., 355, 94 (2009).CrossRefGoogle Scholar
  14. 14.
    X. Liu, H. He, Y. Wang, S. Zhu and X. Piao, Fuel, 87, 216 (2008).CrossRefGoogle Scholar
  15. 15.
    M. Kouzu, T. Kasuno, M. Tajika, Y. Sugimoto, S. Yamanaka and J. Hidaka, Fuel, 87, 2798 (2008).CrossRefGoogle Scholar
  16. 16.
    M. L. Granados, M.D. Z. Poves, D. M. Alonso, R. Mariscal, F. C. Galisteo, R. Moreno-Tost, J. Santamaría and J. L. G. Fierro, Appl. Catal. B: Environ., 73, 317 (2007).CrossRefGoogle Scholar
  17. 17.
    C. S. MacLeod, A. P. Harvey, A. F. Lee and K. Wilson, Chem. Eng. J., 135, 63 (2008).CrossRefGoogle Scholar
  18. 18.
    Y. Lee, H. Shafaghat, J.-K. Kim, J.-K. Jeon, S.-C. Jung, I.-G. Lee and Y.-K. Park, Korean J. Chem. Eng., 34, 2180 (2017).CrossRefGoogle Scholar
  19. 19.
    K. P. Matabola, E. M. van der Merwe, C. A. Strydom and F. J. W. Labuschagne, J. Chem. Technol. Biotechnol., 85, 1569 (2010).CrossRefGoogle Scholar

Copyright information

© Korean Institute of Chemical Engineers, Seoul, Korea 2018

Authors and Affiliations

  • Hannah Kim
    • 1
  • Hoda Shafaghat
    • 1
  • Jae-kon Kim
    • 2
  • Bo Sung Kang
    • 1
  • Jong-Ki Jeon
    • 3
  • Sang-Chul Jung
    • 4
  • In-Gu Lee
    • 5
  • Young-Kwon Park
    • 1
  1. 1.School of Environmental EngineeringUniversity of SeoulSeoulKorea
  2. 2.Research Institute of Petroleum TechnologyKorea Petroleum Quality & Distribution AuthorityCheongjuKorea
  3. 3.Department of Chemical EngineeringKongju National UniversityCheonanKorea
  4. 4.Department of Environmental EngineeringSunchon National UniversitySuncheonKorea
  5. 5.Biomass and Waste Energy LaboratoryKorea Institute of Energy ResearchDaejeonKorea

Personalised recommendations