Korean Journal of Chemical Engineering

, Volume 35, Issue 4, pp 956–963 | Cite as

Combination of supercritical fluid elution and resin adsorption for removal of procymidone from ginseng extracts

  • Guangtao Li
  • Liwei Sun
  • Shaokun Tang
Separation Technology, Thermodynamics


We propose a new method of resin adsorption (RA) coupled with supercritical fluid elution (SFE) for removal of pesticide residue and recovery of ginsenosides from ginseng extracts. D-101-1 resin was selected as the proper adsorption resin, acetone-n-hexane (4 : 6, v : v) served as the modifier with the flow rate of 1.5 mL/min during supercritical CO2 elution of procymidone at 25 MPa, 55°C for 2 h, and absolute ethanol as the modifier at a flow rate of 1 mL/min for supercritical CO2 elution of ginsenosides at 20 MPa, 60°C and 1 h. The results showed that the content of procymidone in the final products was only 0.0089 mg/kg. Meanwhile, the recovery rate of ginsenosides reached up to 92.5%. RA-SFE procedure provides an efficient approach to remove pesticide residue traces with little loss of active ingredients. The used resin can be recycled without any additional regeneration.


Procymidone Pesticide Residues Ginsenosides Supercritical CO2 Extraction Resin Adsorption 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    S. M. Liu, Z. P. Che and G. Q. Chen, Crop Prot., 84, 56 (2016).CrossRefGoogle Scholar
  2. 2.
    T. Xu, Y. T. Wang, W. S. Liang, F. Yao, Y. Li, D. Li, H. Wang and Z. Wang, J. Microbiol., 51, 352 (2013).CrossRefGoogle Scholar
  3. 3.
    Y. Li, M. R. Kim, K. B. Lee, I. S. Kim and J. H. Shim, Food Control, 18, 364 (2007).CrossRefGoogle Scholar
  4. 4.
    I. H. Kang, H. S. Kim, J. H. Shin, T. S. Kim, H. J. Moon, I. Y. Kim, K. S. Choi, K. S. Kil, Y. I. Park, M. S. Dong and S. Y. Han, Toxicology, 199, 145 (2004).CrossRefGoogle Scholar
  5. 5.
    M. H. Petraca, J. O. Fernandes, H. T. Godoy and S. C. Cunha, Food Chem., 212, 528 (2016).CrossRefGoogle Scholar
  6. 6.
    X. Y. Qi, Food Chem., 121, 758 (2010).CrossRefGoogle Scholar
  7. 7.
    L. N. Chen, L. H. Yin, F. R. Song, Z. Q. Liu, Z. Zheng, J. Xing and S. Liu, J. Chromatogr. B, 917-918, 71 (2013).CrossRefGoogle Scholar
  8. 8.
    L. Quan, S. F. Li, S. J. Tian, H. Xu, A. Q. Lin and L. Gu, Chromatographia, 59, 89 (2004).Google Scholar
  9. 9.
    S. Q. Zhang, R. Z. Chen and C. Z. Wang, J. Food Eng., 79, 1 (2007).CrossRefGoogle Scholar
  10. 10.
    D. Luo, T. Qiu and Q. Lu, J. Sci. Food Agric., 87, 431 (2007).CrossRefGoogle Scholar
  11. 11.
    Y. N. Zhao, Z. L. Wang, J. G. Dai, L. Chen and Y. Huang, Chin. J. Nat. Med., 12, 382 (2014).Google Scholar
  12. 12.
    J. N. Mi, M. Zhang, G. X. Ren, H. Zhang, Y. Wang and P. Hu, J. Food Eng., 113, 577 (2012).CrossRefGoogle Scholar
  13. 13.
    S. F. Li, Y. J. Wang, C. Quan and S. J. Tian, Chinese J. Chem. Eng., 13, 433 (2005).Google Scholar
  14. 14.
    C. Quan, S. F. Li, S. J. Tian, H. Xu, A. Lin and L. Gu, J. Supercrit. Fluids, 31, 149 (2004).CrossRefGoogle Scholar
  15. 15.
    C. Quan, Y. G. Shang, S. F. Li, S. K. Tang, T. Huang and X. Fang, J. Taiwan Inst. Chem. E., 41, 44 (2010).CrossRefGoogle Scholar
  16. 16.
    A. Galia, O. Scialdone and E. Tortorici, J. Supercrit. Fluids, 56, 186 (2011).CrossRefGoogle Scholar
  17. 17.
    Z. P. Gao, Z.F. Yu, T. L. Yue and S.Y. Quek, J. Sci. Food Agric., 97, 2498 (2017).CrossRefGoogle Scholar
  18. 18.
    H. Bagheri, Y. Yamini, M. Safari, H. Asiabi, M. Karimi and A. Heydari, J. Supercrit. Fluids, 107, 571 (2015).CrossRefGoogle Scholar
  19. 19.
    J. Deng, H. Yang, Q. Liu, W. Cao and N. Cheng, CN106689980-A (2017).Google Scholar
  20. 20.
    H. Chikushi, K. Hirota, N. Yoshida, T. Edamura and K. Toda, Talanta, 80, 738 (2009).CrossRefGoogle Scholar
  21. 21.
    Q. F. Zhang, Z. T. Jiang and H. J. Gao, Eur. Food Res. Technol., 226, 377 (2008).CrossRefGoogle Scholar
  22. 22.
    Z. Wu, L. Hu, N. Xu, B. L. Dai and J. X. Xu, Korean J. Chem. Eng., 32, 1381 (2015).CrossRefGoogle Scholar
  23. 23.
    H. Y. Luo, H. W. Liu, Y. H. Cao, D. Xu, Z. L. Mao, Y. Mou, J. J. Meng, D. W. Lai, Y. Liu and L. G. Zhou, Molecules, 19, 14221 (2014).CrossRefGoogle Scholar
  24. 24.
    H. B. Du, H. Wang, J. Yu, C. Liang, W. Ye and P. Li, Ind. Eng. Chem. Res., 51, 7349 (2012).CrossRefGoogle Scholar
  25. 25.
    Y. F. Liu, J. X. Liu, X. F. Chen, Y. Liu and D. Di, Food Chem., 123, 1027 (2010).CrossRefGoogle Scholar
  26. 26.
    R. H. Xu, N. Cheng, W. Huang, H. Gao, J. Deng and W. Cao, Food Control, 23, 234 (2012).CrossRefGoogle Scholar
  27. 27.
    S. M. Ghoreishi and E. Bataghva, Korean J. Chem. Eng., 31, 1632 (2014).CrossRefGoogle Scholar
  28. 28.
    L. Tian, M. Zhou, X. Pan, G. Xiao and Y. Liu, Korean J. Chem. Eng., 32, 1649 (2015).CrossRefGoogle Scholar
  29. 29.
    M. L. Jeong and D. J. Chesney, J. Supercrit. Fluids, 16, 33 (1999).CrossRefGoogle Scholar
  30. 30.
    S. Bϕwadt and S. B. Hawthorne, J. Chromatogr. A, 703, 549 (1995).CrossRefGoogle Scholar
  31. 31.
    M. Kane, J. R. Dean, S. M. Hitchen, W. R. Tomlinson, R. L. Tranter and C. J. Dowle, Analyst, 118, 1261 (1993).CrossRefGoogle Scholar
  32. 32.
    R. G. Bitencourt, C. L. Queiroga, I. M. Junior and F. A. Cabral, J. Supercrit. Fluids, 92, 272 (2014).CrossRefGoogle Scholar

Copyright information

© Korean Institute of Chemical Engineers, Seoul, Korea 2018

Authors and Affiliations

  1. 1.Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering & TechnologyTianjin UniversityTianjinChina
  2. 2.Collaborative Innovation Center of Chemical Science and Engineering (Tianjin)Tianjin UniversityTianjinChina

Personalised recommendations