Korean Journal of Chemical Engineering

, Volume 35, Issue 4, pp 1019–1025 | Cite as

Hydrothermally synthesized highly dispersed Na2Ti3O7 nanotubes and their photocatalytic degradation and H2 evolution activity under UV and simulated solar light irradiation

  • S. V. Prabhakar Vattikuti
  • Police Anil Kumar Reddy
  • Narendra Bandaru
  • Jaesool Shim
  • Chan Byon
Materials (Organic, Inorganic, Electronic, Thin Films)


Photocatalytic water splitting technologies are currently being considered for alternative energy sources. However, the strong demand for a high H2 production rate will present conflicting requirements of excellent photoactivity and low-cost photocatalysts. The first alternative may be abundant nanostructured titanate-related materials as a photocatalyst. Here, we report highly dispersed Na2Ti3O7 nanotubes synthesized via a facile hydrothermal route for photocatalytic degradation of Rhodamine B (RhB) and the water splitting under UV-visible light irradiation. Compared with commercial TiO2, the nanostructured Na2Ti3O7 demonstrated excellent photodegradation and water splitting performance, thus addressing the need for low-cost photocatalysts. The as-synthesized Na2Ti3O7 nanotubes exhibited desirable photodegradation, and rate of H2 production was 1,755 μmol·g−1·h−1 and 1,130 μmol·g−1·h−1 under UV and simulated solar light irradiation, respectively; the resulting as-synthesized Na2Ti3O7 nanotubes are active in UV light than that of visible light response.


Photocatalysts Na2Ti3O7 Hydrogen Evolution Pollutants Renewable Energy 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    H. Hayashi, T. Nakamura and T. Ebina, J. Ceram. Soc. Jpn., 124(1), 74 (2016).CrossRefGoogle Scholar
  2. 2.
    A.-L. Sauvet, S. Baliteau, C. Lopez and P. Fabry, J. Solid State Chem., 177, 4508 (2004).CrossRefGoogle Scholar
  3. 3.
    P. Umek, R. C. Korosec, B. Jancar, R. Dominko and D. Arcon, J. Nanosci. Nanotechno., 7, 3502 (2007).CrossRefGoogle Scholar
  4. 4.
    S. Preda, M. Rutar, P. Umek and M. Zaharescu, Mater. Res. Bull., 71, 98 (2015).CrossRefGoogle Scholar
  5. 5.
    A. Rudola, N. Sharma and P. Balaya, Electrochem. Commun., 61, 10 (2015).CrossRefGoogle Scholar
  6. 6.
    S. Anwer, Y. Huang, J. liu, J. Liu, M. Xu, Z. Wang, R. Chen, J. Zhang and F. Wu, ACS Appl. Mater. Interfaces, 9(13), 11669 (2017).CrossRefGoogle Scholar
  7. 7.
    Y.-T. Yu, Korean J. Chem. Eng., 20(5), 850 (2003).CrossRefGoogle Scholar
  8. 8.
    D. J.D. Corcoran, D. P. Tunstall and J. T. S. Irvine, Solid State Ionics, 136-137, 297 (2000).CrossRefGoogle Scholar
  9. 9.
    S. Ogura, M. Kohno, K. Sato and Y. Inoue, J. Mater. Chem., 8, 2335 (1998).CrossRefGoogle Scholar
  10. 10.
    Y. Wei, L. Shen, Z. Wang, W.-D. Yang and H. Liu, Int. J. Hydrogen Energy, 36(8), 5088 (2011).CrossRefGoogle Scholar
  11. 11.
    C.-Y. Xu, J. Wu, P. Zhang, S. P. Hu, J.-X. Cui, Z.-Q. Wang, Y.-D. Huang and L. Zhen, Cryst. Eng. Commun., 15, 3448 (2013).CrossRefGoogle Scholar
  12. 12.
    H. Izawa, S. Kikkawa and M. Koizumi, J. Phys. Chem., 86, 5023 (1982).CrossRefGoogle Scholar
  13. 13.
    Y. P. Zhang, L. Guo and S. H. Yang, Chem. Commun., 50, 14029 (2014).CrossRefGoogle Scholar
  14. 14.
    T. Kasuga, M. Hiramatsu, A. Hosono, T. Sekino and K. Niihara, Langmuir, 14, 3160 (1998).CrossRefGoogle Scholar
  15. 15.
    Z. Zhang, J. B. M. Goodall, S. Brown, L. Karlsson, R. J. H. Clark, J. L. Hutchison, I. U. Rehman and J. A. Darr, Dalton Trans., 39, 711 (2010).CrossRefGoogle Scholar
  16. 16.
    W. Wang, C. Yu, Z. Lin, J. Hou, H. Zhu and S. Jiao, Nanoscale, 5, 594 (2013).CrossRefGoogle Scholar
  17. 17.
    T. G. Deepak, D. Subash, G. S. Anjusree, K.R. Narendra Pai, S. V. Nair and A. Sreekumaran Nair, ACS Sustainable Chem. Eng., 2(12), 2772 (2014).CrossRefGoogle Scholar
  18. 18.
    P. Sujaridworakun, S. Larpkiattaworn, S. Saleepalin and T. Wasanapiarnpong, Adv. Powder Technol., 23(6), 752 (2012).CrossRefGoogle Scholar
  19. 19.
    V. Etacheri, C. D. Valentin, J. Schneider, D. Bahnemann and S.C. Pillai, J. Photochem. Photobiol. C: Photochem. Rev., 25, 1 (2015).CrossRefGoogle Scholar
  20. 20.
    S. V. P. Vattikuti, C. Byon, Ch.V. Reddy and R. V. S. S. N. Ravikumar, RSC Adv., 5, 86675 (2015).CrossRefGoogle Scholar

Copyright information

© Korean Institute of Chemical Engineers, Seoul, Korea 2018

Authors and Affiliations

  • S. V. Prabhakar Vattikuti
    • 1
  • Police Anil Kumar Reddy
    • 2
  • Narendra Bandaru
    • 3
  • Jaesool Shim
    • 1
  • Chan Byon
    • 2
  1. 1.School of Mechanical EngineeringYeungnam UniversityGyeongsanKorea
  2. 2.School of Mechanical and Nuclear EngineeringUlsan National Institute of Science and Technology (UNIST)UlsanKorea
  3. 3.Department of Material Science and EngineeringIIT Gandhi NagarAhmedabadIndia

Personalised recommendations