Korean Journal of Chemical Engineering

, Volume 35, Issue 4, pp 964–973 | Cite as

Anti-fouling characteristic of carbon nanotubes hollow fiber membranes by filtering natural organic pollutants

  • Yue Yang
  • Sen Qiao
  • Ruofei Jin
  • Jiti Zhou
  • Xie Quan
Separation Technology, Thermodynamics


Membrane fouling is a universal problem for conventional membrane filtration that usually causes a deterioration in membrane performance. We used electro-assisted carbon nanotubes hollow fiber membranes (CNTs-HFMs) to investigate the anti-fouling properties using natural organic pollutants. Benefiting from the electro-assistance, the permeation flux of humic acid solution using CNTs-HFMs was 190.20 L/(m2·h·bar), which was about 1.5- and 4.4-times higher than those of CNTs-HFMs without electro-assistance and traditional polyvinylidene fluoride hollow-fiber membranes (PVDF-HFMs). And the permeation fluxes of bovine serum albumin, sodium alginate and supernatant of anaerobic bioreactor also presented similar results. The average COD removal rate of CNTs-HFMs (66.8%) at −1.0 V was higher than that of CNTs-HFMs without electro-assistance and PVDF-HFMs, which can be attributed to the formation of electrostatic repulsive force. It could reduce the deposition of pollutants on membrane surface under electroassistance.


Carbon Nanotubes Hollow Fiber Membranes Membrane Fouling Natural Organic Pollutants Electrochemical Effects COD Removal 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

11814_2017_354_MOESM1_ESM.pdf (79 kb)
Anti-fouling characteristic of carbon nanotubes hollow fiber membranes by filtering natural organic pollutants


  1. 1.
    W. Wang, Q. Yang, S. Zheng and D. Wu, Bioresource Technol., 149, 292 (2013).CrossRefGoogle Scholar
  2. 2.
    Y. An, Z. Wang, Z. Wu, D. Yang and Q. Zhou, Chem. Eng. J., 155, 709 (2009).CrossRefGoogle Scholar
  3. 3.
    Z. Wang, Z. Wu, X. Yin and L. Tian, J. Membr. Sci., 25, 238 (2008).CrossRefGoogle Scholar
  4. 4.
    T. Li, A. W. K. Law, Y. Jiang, A. K. Harijanto and A. G. Fane, J. Membr. Sci., 505, 216 (2016).CrossRefGoogle Scholar
  5. 5.
    I. S. Chang, P. Le Clech, B. Jefferson and S. Judd, J. Environ. Eng., 128, 1018 (2002).CrossRefGoogle Scholar
  6. 6.
    G. Sheng, H. Yu and X. Li, Biotechnol. Adv., 28, 882 (2010).CrossRefGoogle Scholar
  7. 7.
    I. S. Chang and C. H. Lee, Desalination, 120, 221 (1998).CrossRefGoogle Scholar
  8. 8.
    K. H. Choo and C. H. Lee, Water Res., 30, 1771 (1996).CrossRefGoogle Scholar
  9. 9.
    R. Chan and V. Chen, J. Membr. Sci., 242, 169 (2004).CrossRefGoogle Scholar
  10. 10.
    W. S. Ang, A. Tiraferri, K. L. Chen and M. Elimelech, J. Membr. Sci., 376, 196 (2011).CrossRefGoogle Scholar
  11. 11.
    A. Al-Amoudi and R. W. Lovitt, J. Membr. Sci., 303, 4 (2007).CrossRefGoogle Scholar
  12. 12.
    N. M. D’souza and A. Mawson, Crit. Rev. Food Sci., 45, 125 (2005).CrossRefGoogle Scholar
  13. 13.
    Z. Wang, J. Ma, C. Y. Tang, K. Kimura, Q. Wang and X. Hang, J. Membr. Sci., 468, 276 (2014).CrossRefGoogle Scholar
  14. 14.
    K. P. Katuri, C. M. Werner, R. J. Jimenez-Sandoval, W. Chen, S. Jeon, B. E. Logan, Z. Lai, G. L. Amy and P. E. Saikaly, Environ. Sci. Technol., 48, 12833 (2014).CrossRefGoogle Scholar
  15. 15.
    P. Gunawan, C. Guan, X. Song, Q. Zhang, S. Su, J. Leong, C. Tang, Y. Chen, M. B. Chan-Park, M. W. Chang, K. Wang and X. Xu, ACS Nano, 5, 10033 (2011).CrossRefGoogle Scholar
  16. 16.
    G. L. Wei, X. Quan, S. Chen, X. F. Fan, H.T. Yu and H. M. Zhao, ACS Appl. Mater. Inter., 7, 14620 (2015).CrossRefGoogle Scholar
  17. 17.
    M. Yu, H. H. Funke, J. L. Falconer, R. D. Noble, Nano Lett., 9, 225 (2008).CrossRefGoogle Scholar
  18. 18.
    M. H. O. Rashid, S. Q. T. Pham, L. J. Sweetman, L. J. Alcock, A. Wise, L. D. Nghiem, G. Triani, M. I. H. Panhuis and S. F. Ralph, J. Membr. Sci., 456, 175 (2014).CrossRefGoogle Scholar
  19. 19.
    X. W. Zhang, D. K. Wang, D. R. S. Lopez and J. C. D. da Costa, Chem. Eng. J., 236, 314 (2014).CrossRefGoogle Scholar
  20. 20.
    A. Saxena, B. P. Tripathi, M. Kumar and V. K. Shahi, Adv. Colloid Interface, 145, 1 (2009).CrossRefGoogle Scholar
  21. 21.
    G. L. Wei, S. Chen, X. F. Fan, X. Quan and H. T. Yu, J. Membr. Sci., 493, 97 (2015).CrossRefGoogle Scholar
  22. 22.
    Y. K. Wang, W. W. Li, G. P. Sheng, B. J. Shi and H. Q. Yu, Water Res., 47, 5794 (2013).CrossRefGoogle Scholar
  23. 23.
    Z. X. Jin, S. H. Goh, G. Q. Xu and Y. W. Park, Synthetic Met., 135, 735 (2003).CrossRefGoogle Scholar
  24. 24.
    M. D. Frogley, D. Ravich and H. D. Wagner, Compos. Sci. Technol., 63, 1647 (2003).CrossRefGoogle Scholar
  25. 25.
    C. Bower, R. Rosen, L. Jin, J. Han and O. Zhou, Appl. Phys. Lett., 74, 3317 (1999).CrossRefGoogle Scholar
  26. 26.
    Q. Li and M. Elimelech, Environ. Sci. Technol., 38, 4683 (2004).CrossRefGoogle Scholar
  27. 27.
    Q. Li and M. Elimelech, J. Membr. Sci., 278, 72 (2006).CrossRefGoogle Scholar
  28. 28.
    A. Akbari, P. Sheath, S. T. Martin, D. B. Shinde, M. Shaibani, P. C. Banerjee, R. Tkacz, D. Bhattacharyya and M. Majumder, Nat. Commun., 7, 10891 (2016).CrossRefGoogle Scholar
  29. 29.
    V. Vatanpour, M. Esmaeili and M. H. D. A. Farahani, J. Membr. Sci., 466, 70 (2014).CrossRefGoogle Scholar
  30. 30.
    Y. Zhang, Z. Wang, W. Lin, H. Sun, L. Wu and S. Chen, J. Membr. Sci., 446, 164 (2013).CrossRefGoogle Scholar
  31. 31.
    H. Wu, B. Tang and P. Wu, J. Membr. Sci., 428, 425 (2013).CrossRefGoogle Scholar
  32. 32.
    Y. Shimizu, M. Rokudai, S. Tohya, E. Kayawake and T. Yazawa, Kagaku Kogaku Ronbun., 16, 145 (1990).CrossRefGoogle Scholar
  33. 33.
    Z. He, D. J. Miller, S. Kasemset, D. R. Paul and B. D. Freeman, J. Membr. Sci., 525, 25 (2017).CrossRefGoogle Scholar
  34. 34.
    Z. Wang, L. Ci, L. Chen, S. Nayak, P. M. Aiayan and N. Koratkar, Nano Lett., 7, 697 (2007).CrossRefGoogle Scholar
  35. 35.
    B. He, N. A. Patankar and J. Lee, Langmuir, 19, 4999 (2003).CrossRefGoogle Scholar
  36. 36.
    X. F. Fan, H. M. Zhao, Y. M. Liu, X. Quan, H. T. Yu and S. Chen, Environ. Sci. Technol., 49, 2293 (2015).CrossRefGoogle Scholar
  37. 37.
    K. Katsoufidou, S. G. Yiantsios and A. J. Karabelas, J. Membr. Sci., 266, 40 (2005).CrossRefGoogle Scholar
  38. 38.
    A. W. Zularisam, A. F. Ismail, M. R. Salim, M. Sakinah and H. Ozaki, Desalination, 212, 191 (2007).CrossRefGoogle Scholar
  39. 39.
    J. Tian, M. Ernst, F. Cui and M. Jekel, Chem. Eng. J., 223, 547 (2013).CrossRefGoogle Scholar
  40. 40.
    K. Li, H. Liang, F. Qu, S. Shao, H. Yu, Z. Han, X. Du and G. Li, J. Membr. Sci., 471, 94 (2014).CrossRefGoogle Scholar
  41. 41.
    A. E. Contreras, A. Kim and Q. Li, J. Membr. Sci., 327, 87 (2009).CrossRefGoogle Scholar
  42. 42.
    H. C. Kim and B. A. Dempsey, J. Membr. Sci., 428, 190 (2013).CrossRefGoogle Scholar
  43. 43.
    M. Hashino, T. Katagiri, N. Kubota, Y. Ohmukai, T. Maruyama and H. Matsuyama, J. Membr. Sci., 366, 258 (2011).CrossRefGoogle Scholar
  44. 44.
    F. Qu, H. Liang, Z. Wang, H. Wang, H. Yu and G. Li, Water Res., 46, 1490 (2012).CrossRefGoogle Scholar
  45. 45.
    L. Bai, H. Liang, J. Crittenden, F. Qu, A. Ding, J. Ma, X. Du, S. Guo and G. Li, J. Membr. Sci., 492, 400 (2015).CrossRefGoogle Scholar
  46. 46.
    H. Ryssov-Nielsen, Vatten, 1, 33 (1975).Google Scholar
  47. 47.
    J. T. Novak, A. Zurow and H. Becker, J. Environ. Eng. Div., 103, 815 (1977).Google Scholar
  48. 48.
    S. Kang, M. Kishimoto, S. Shioya, T. Yoshida, K. Suga and H. Taguchi, J. Ferment. Bioeng., 68, 117 (1989).CrossRefGoogle Scholar
  49. 49.
    H. C. Flemming and J. Wingender, Water Sci. Technol., 43, 1 (2001).Google Scholar
  50. 50.
    V. Vatanpour, S. S. Madaeni, R. Moradian, S. Zinadini and B. Astinchap, J. Membr. Sci., 375, 284 (2011).CrossRefGoogle Scholar

Copyright information

© Korean Institute of Chemical Engineers, Seoul, Korea 2018

Authors and Affiliations

  1. 1.Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and TechnologyDalian University of TechnologyDalianP. R. China

Personalised recommendations