Skip to main content
Log in

Evaluating isotherm models for the prediction of flue gas adsorption equilibrium and dynamics

  • Separation Technology, Thermodynamics
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

We evaluated isotherm models for the precise prediction of adsorption equilibrium and breakthrough dynamics. Adsorption experiments were performed using pure N2, CO2 and their binary mixture with an activated carbon (AC) material as an adsorbent. Both BET and breakthrough measurements were conducted at various conditions of temperature and pressure. The corresponding uptake amount of pure component adsorption was experimentally determined, and parameters of the four different isotherm models, Langmuir, Langmuir-Freundlich, Sips, and Toth, were calculated from the experimental data. The predictive capability of each isotherm model was also evaluated with the binary experimental results of binary N2/CO2 mixtures, by means of sum of square errors (SSE). As a result, the Toth model was the most precise isotherm model in describing CO2 adsorption equilibrium on the AC. Based on the breakthrough experimental result from the binary mixture adsorption, non-isothermal modeling for the adsorption bed was performed. The breakthrough results with all of the isotherm models were examined by rigorous dynamic simulations, and the Toth model was also the most accurate model for describing the dynamics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. U.S. Environmental Protection Agency (EPA), Inventory of U.S. Greenhouse Gas Emissions and Sinks: 1990-2013. U.S. EPA, 2015.

    Google Scholar 

  2. J.D. Figueroa, T. Fout, S. Plasynski, H. McIlyried and R.D. Srivastava, Int. J. Greenhouse Gas Control, 2, 9 (2008).

    Article  CAS  Google Scholar 

  3. P. Folger, Carbon Capture: A Technology Assessment, CRS Report for Congress (2010).

    Google Scholar 

  4. C.-H. Yu, C.-H. Huang and C.-S. Tan, Aerosol Air Quality Res., 12, 745 (2012).

    CAS  Google Scholar 

  5. J. H. Choi, Y. E. Kim, S. C. Nam, S. H. Yun, Y. I. Yoon and J.-H. Lee, Korean J. Chem. Eng., 33, 3222 (2016).

    Article  CAS  Google Scholar 

  6. J. Zhang, P. Yedlapalli and J.W. Lee, Chem. Eng. Sci., 64, 4732 (2009).

    Article  CAS  Google Scholar 

  7. J. Zhang and J.W. Lee, Ind. Eng. Chem. Res., 48, 5934 (2009).

    Article  CAS  Google Scholar 

  8. S. Lee, L. Liang, D. Riestenberg, O.R. West, C. Tsouris and E. Adams, Environ. Sci. Technol., 37, 3701 (2003).

    Article  CAS  Google Scholar 

  9. D. M. D’Alessandro, B. Smit and J.R. Long, Angew. Chem. Int. Ed., 49, 6058 (2010).

    Article  Google Scholar 

  10. S. Khalili, B. Khoshandam and M. Jahanshahi, Korean J. Chem. Eng., 33, 2943 (2016).

    Article  CAS  Google Scholar 

  11. K.T. Chue, J. N. Kim, Y. J. Yoo, S. H. Cho and R.T. Yang, Ind. Eng. Chem. Res., 34, 591 (1995).

    Article  CAS  Google Scholar 

  12. S. Himeno, T. Komatsu and S. Fujita, J. Chem. Eng. Data, 50, 369 (2005).

    Article  CAS  Google Scholar 

  13. Y.-J. Wu, Y. Yang, X.-M. Kong, P. Li, J.-G. Yu, A. M. Ribeiro and A. E. Rodrigues, J. Chem. Eng. Data, 60, 2684 (2015).

    Article  CAS  Google Scholar 

  14. S. Cavenati, C. A. Grande and A. E. Rodrigues, J. Chem. Eng. Data, 49, 1095 (2004).

    Article  CAS  Google Scholar 

  15. T. E. Rufford, G. C.Y. Watson, T. L. Saleman, P. S. Hofman, N. K. Jensen and E. F. May, Ind. Eng. Chem. Res., 52, 14270 (2013).

    Article  CAS  Google Scholar 

  16. N.A. Rashidi, S. Yusup and B. H. Hameed, Energy, 61, 440 (2013).

    Article  CAS  Google Scholar 

  17. T. L. P. Dantas, F. M.T. Luna, I. J. Silva Jr., A. E.B. Torres, D. C. S. de Azevedo, A. E. Rodrigues and R. F. P. M. Moreira, Brazilian J. Chem. Eng., 28, 533 (2011).

    Article  CAS  Google Scholar 

  18. E. Gleuckauf, Trans. Faraday Soc., 51, 1540 (1955).

    Article  Google Scholar 

  19. A. Malek and S. Farooq, AIChE J., 42, 761 (1997).

    Article  Google Scholar 

  20. J. Park and J.W. Lee, Korean J. Chem. Eng., 33, 438 (2016).

    Article  CAS  Google Scholar 

  21. N. Casas, J. Schell, R. Pini and M. Mazzotti, Adsorption, 18, 143 (2012).

    Article  CAS  Google Scholar 

  22. J. Park, R. H. Kang and J.W. Lee, Korean J. Chem. Eng., 34, 1763 (2017).

    Article  CAS  Google Scholar 

  23. S.H. Kang, B. M. Jeong, H.W. Choi, E. S. Ahn, S. C. Jang, S.H. Kim, B.K. Lee and D.K. Choi, Korean Chem. Eng. Res., 43, 728 (2005).

    CAS  Google Scholar 

  24. R. B. Bird, W. E. Stewart and E.N. Lightfoot, Transport Phenomena 2nd Ed. Wiley (2007).

    Google Scholar 

  25. J.M. Becnel, C. E. Holland, J. McIntyre, M. A. Matthews and J.A. Ritter, Fundamentals of Fixed Bed Adsorption Processes: Analysis of Adsorption Breakthrough and Desorption Elution Curves, Proceedings of the 2002 American Society for Engineering Education Annual Conference & Exposition, 2002, Session (1613).

    Google Scholar 

  26. Y. S. Ho, J. F. Porter and G. Mckay, Water, Air and Soil Pollution, 141, 1 (2002).

    Article  CAS  Google Scholar 

  27. J.W. Lee, Y.C. Ko, Y.K. Jung, K. S. Lee and Y. S. Yoon, Comp. Chem. Eng., 21, S1105 (1997).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jae W. Lee.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kang, R.H., Park, J., Kang, D. et al. Evaluating isotherm models for the prediction of flue gas adsorption equilibrium and dynamics. Korean J. Chem. Eng. 35, 734–743 (2018). https://doi.org/10.1007/s11814-017-0353-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-017-0353-1

Keywords

Navigation