Optimization design research of air flow distribution in vertical radial flow adsorbers
- 19 Downloads
Abstract
Non-uniform flow distribution usually exists in a vertical radial flow adsorber, which significantly decreases the utilization of adsorbents. We adopted numerical simulation methods based on the ANSYS Fluent 15.0 software to study the flow pattern in vertical radial flow adsorber, where programs of user-defined functions (UDF) were set up to interpret component equation, momentum equation and energy equation. To solve the problem of non-uniform air distribution, the relationship between the radial pressure drop across the bed and the ratio of cross-sectional area of the central pipe to that of the annular channel was studied, and optimization design of the distributor inserted in the central channel was given by parametric method at the same time. Through comparative analysis in the given experimental condition, the uniformity reached about 99.1% and the breakthrough time extended from 564 s to 1,175 s under the present optimized design method.
Keywords
Flow Distribution Radial Flow Adsorber Numerical Simulation Optimization Design DistributorPreview
Unable to display preview. Download preview PDF.
References
- 1.A. Ebrahimi, M. Meratizaman, H. A. Reyhani, O. Pourali and M. Amidpour, Energy, 90, 1298 (2015).CrossRefGoogle Scholar
- 2.M. Mehrpooya, M. Kalhorzadeh and M. Chahartaghi, J. Clean. Prod., 113, 411 (2016).CrossRefGoogle Scholar
- 3.X. J. Zhang, J. L. Lu, L. M. Qiu, X. B. Zhang and X. L. Wang, Chinese. J. Chem. Eng., 21, 494 (2013).CrossRefGoogle Scholar
- 4.F. G. Kerry, Industrial Gas Handbook, CRC press, Florida (2006).Google Scholar
- 5.H. Y. Wang, Y. S. Liu and X. Yang, Chem. Ind. Eng. Prog., 33, 542 (2014).Google Scholar
- 6.M. Zhang, Cryogenic. Technol., 2, 8 (2006).Google Scholar
- 7.G. Li, P. Xiao, P. A. Webley, J. Zhang and R. Singh, Energy Procedia, 1, 1123 (2009).CrossRefGoogle Scholar
- 8.E. Yaghoobpour, A. Ahmadpour, N. Farhadian and M. Shariaty- Niassar, Korean. J. Chem. Eng., 32, 494 (2015).CrossRefGoogle Scholar
- 9.R. J. Li and Z. B. Zhu, Chem. React. Eng. Technol., 24, 368 (2008).Google Scholar
- 10.V. P. Mulgundmath, F. H. Tezel, T. Saatcioglu and T. C. Golden, Can. J. Chem. Eng., 90, 730 (2012).CrossRefGoogle Scholar
- 11.F. E. Epiepang, J. Li, Y. Liu and R. T. Yang, Chem. Eng. Sci., 147, 100 (2016).CrossRefGoogle Scholar
- 12.A. A. Kareeri, H. D. Zughbi and H. H. Al-Ali, Ind. Eng. Chem. Res., 45, 2862 (2006).CrossRefGoogle Scholar
- 13.V. S. Genkin, V. V. Dil-Man and S. P. Sergeev, Int. Chem. Eng., 13, 24 (1973).Google Scholar
- 14.C. E. Celik and M. W. Ackley, EU Patent, 2,624,946 (2014).Google Scholar
- 15.H. Y. Wang, Y. S. Liu and Y. Meng, Chinese J. Eng., 1, 91 (2015).CrossRefGoogle Scholar
- 16.X. Wang, Cryogenics, 1, 19 (2013).Google Scholar
- 17.Q. Q. Tian, G. G. He, Z. P. Wang, D. H. Cai and L. P. Chen, Ind. Eng. Chem. Res., 54, 7502 (2015).CrossRefGoogle Scholar
- 18.D. Z. Rui, X. J. Zhang, Y. Chen and L. M. Qiu, Chinese J. Chem. Eng., 11, 4485 (2015).Google Scholar
- 19.Z. L. Tang, M. Y. Xu and J. Zhang, J. Tianjin Univ., 3, 305 (2016).Google Scholar
- 20.C. F. Zhang, Z. B. Zhu, M. S. Xu and B. C. Zhu, J. Chem. Ind. Eng., 1, 67 (1979).Google Scholar
- 21.R. J. Li, C. X. Cui, Y. Q. Wu and Z. B. Zhu, Chin. J. Proc. Eng., 2, 209 (2010).Google Scholar