Advertisement

Korean Journal of Chemical Engineering

, Volume 35, Issue 4, pp 835–846 | Cite as

Optimization design research of air flow distribution in vertical radial flow adsorbers

  • Yao Li
  • Haiqing Si
  • Bing Wang
  • Lu Xue
  • Xiaojun Wu
Transport Phenomena
  • 45 Downloads

Abstract

Non-uniform flow distribution usually exists in a vertical radial flow adsorber, which significantly decreases the utilization of adsorbents. We adopted numerical simulation methods based on the ANSYS Fluent 15.0 software to study the flow pattern in vertical radial flow adsorber, where programs of user-defined functions (UDF) were set up to interpret component equation, momentum equation and energy equation. To solve the problem of non-uniform air distribution, the relationship between the radial pressure drop across the bed and the ratio of cross-sectional area of the central pipe to that of the annular channel was studied, and optimization design of the distributor inserted in the central channel was given by parametric method at the same time. Through comparative analysis in the given experimental condition, the uniformity reached about 99.1% and the breakthrough time extended from 564 s to 1,175 s under the present optimized design method.

Keywords

Flow Distribution Radial Flow Adsorber Numerical Simulation Optimization Design Distributor 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. Ebrahimi, M. Meratizaman, H. A. Reyhani, O. Pourali and M. Amidpour, Energy, 90, 1298 (2015).CrossRefGoogle Scholar
  2. 2.
    M. Mehrpooya, M. Kalhorzadeh and M. Chahartaghi, J. Clean. Prod., 113, 411 (2016).CrossRefGoogle Scholar
  3. 3.
    X. J. Zhang, J. L. Lu, L. M. Qiu, X. B. Zhang and X. L. Wang, Chinese. J. Chem. Eng., 21, 494 (2013).CrossRefGoogle Scholar
  4. 4.
    F. G. Kerry, Industrial Gas Handbook, CRC press, Florida (2006).Google Scholar
  5. 5.
    H. Y. Wang, Y. S. Liu and X. Yang, Chem. Ind. Eng. Prog., 33, 542 (2014).Google Scholar
  6. 6.
    M. Zhang, Cryogenic. Technol., 2, 8 (2006).Google Scholar
  7. 7.
    G. Li, P. Xiao, P. A. Webley, J. Zhang and R. Singh, Energy Procedia, 1, 1123 (2009).CrossRefGoogle Scholar
  8. 8.
    E. Yaghoobpour, A. Ahmadpour, N. Farhadian and M. Shariaty- Niassar, Korean. J. Chem. Eng., 32, 494 (2015).CrossRefGoogle Scholar
  9. 9.
    R. J. Li and Z. B. Zhu, Chem. React. Eng. Technol., 24, 368 (2008).Google Scholar
  10. 10.
    V. P. Mulgundmath, F. H. Tezel, T. Saatcioglu and T. C. Golden, Can. J. Chem. Eng., 90, 730 (2012).CrossRefGoogle Scholar
  11. 11.
    F. E. Epiepang, J. Li, Y. Liu and R. T. Yang, Chem. Eng. Sci., 147, 100 (2016).CrossRefGoogle Scholar
  12. 12.
    A. A. Kareeri, H. D. Zughbi and H. H. Al-Ali, Ind. Eng. Chem. Res., 45, 2862 (2006).CrossRefGoogle Scholar
  13. 13.
    V. S. Genkin, V. V. Dil-Man and S. P. Sergeev, Int. Chem. Eng., 13, 24 (1973).Google Scholar
  14. 14.
    C. E. Celik and M. W. Ackley, EU Patent, 2,624,946 (2014).Google Scholar
  15. 15.
    H. Y. Wang, Y. S. Liu and Y. Meng, Chinese J. Eng., 1, 91 (2015).CrossRefGoogle Scholar
  16. 16.
    X. Wang, Cryogenics, 1, 19 (2013).Google Scholar
  17. 17.
    Q. Q. Tian, G. G. He, Z. P. Wang, D. H. Cai and L. P. Chen, Ind. Eng. Chem. Res., 54, 7502 (2015).CrossRefGoogle Scholar
  18. 18.
    D. Z. Rui, X. J. Zhang, Y. Chen and L. M. Qiu, Chinese J. Chem. Eng., 11, 4485 (2015).Google Scholar
  19. 19.
    Z. L. Tang, M. Y. Xu and J. Zhang, J. Tianjin Univ., 3, 305 (2016).Google Scholar
  20. 20.
    C. F. Zhang, Z. B. Zhu, M. S. Xu and B. C. Zhu, J. Chem. Ind. Eng., 1, 67 (1979).Google Scholar
  21. 21.
    R. J. Li, C. X. Cui, Y. Q. Wu and Z. B. Zhu, Chin. J. Proc. Eng., 2, 209 (2010).Google Scholar

Copyright information

© Korean Institute of Chemical Engineers, Seoul, Korea 2018

Authors and Affiliations

  • Yao Li
    • 1
  • Haiqing Si
    • 1
  • Bing Wang
    • 1
  • Lu Xue
    • 2
  • Xiaojun Wu
    • 3
  1. 1.College of Civil AviationNanjing University of Aeronautics and AstronauticsNanjingChina
  2. 2.Suzhou Xinglu Air Separation Plant Technology Development Co., Ltd.SuzhouChina
  3. 3.China Aerodynamics Research and Development CenterMianyangChina

Personalised recommendations